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Abstract. This work is concerned with the hole-tone feedback cycle problem, also known as
Rayleigh’s bird-call. A simulation method for analyzing the influence of non- axisymmetric pertur-
bations of the jet on the sound generation is described. In planned experiments these perturbations
will be applied at the jet nozzle via piezoelectric or electro-mechanical actuators, placed circum-
ferentially inside the nozzle at its exit. The mathematical model is based on a three-dimensional
vortex method. The nozzle and the holed end-plate are represented by quadrilateral vortex panels,
while the shear layer of the jet is represented by vortex rings, composed of vortex filaments. The
sound generation is described mathematically using the Powell-Howe theory of vortex sound. The
aim of the work is to understand the effects of a variety of flow perturbations, in order to control
the flow and the accompanying sound generation.
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1. Introduction

Self-sustained fluid oscillations can occur in a variety of practical applications where
a shear layer impinges upon a solid structure [1]. The oscillations are the cause
of sound generation, which typically is powerful. In cases of music instruments
(flutes, etc.) and whistles, sound generation is, of course, the aim. By engineering
applications however, the sound generation is, in most cases, an unwanted, annoying
side effect.

The present paper is concerned with the so-called hole-tone problem [2, 3]. The
common teakettle whistle is an example of utilization of the sound generation in
this system. The steam jet, issuing from a nozzle, passes through a similar hole
in a plate, placed a little downstream from the nozzle. The shear layer of the jet
is unstable and rolls up into a large, coherent vortex (’smoke-ring’). This large
vortex cannot pass through the hole in the plate and hits the edge of the hole,
where it creates a pressure disturbance. This disturbance is thrown back (with the
speed of sound) to the nozzle, where it disturbs the shear layer. This initiates the
roll-up of a new coherent vortex. In this way an acoustic feedback loop is formed.
Figure 1(a) illustrates the principle of the hole-tone phenomenon. Figure 1(b) shows
an experimental realization, with the vortex roll-up visualized by the smoke wire
technique [4].

The basic dynamics of the hole-tone feedback system was studied numerically in
Ref. [5], using an axisymmetric discrete vortex method, combined with an aeroacous-
tic model based on Curle’s theory [6]. This approach could predict the fundamental
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Figure 1. Left: Geometry and physical features of the hole-tone problem. Right: Flow
visualization of the vortex roll-up [4].

characteristics of the problem quite well, in particular the fluid-dynamic character-
istics. The acoustic model gave qualitative correct results but overestimated the
sound pressure levels.

The hole-tone system is a part of many engineering systems, where sound gen-
eration is unwanted. Examples include automobile intake- and exhaust systems,
gas/steam distribution systems (bellows, valves, etc.), and solid-propellant rocket
motors. In these cases, if a geometry which avoids the sound-generation cannot
easily be obtained, a control method which can eliminate, or at least suppress, the
sound generation is desirable.

Nakano et al. [4] studied experimentally a forced excitation strategy to eliminate
the hole-tone feedback cycle in the system depicted in Figure 1. The shear layer
near the nozzle exit was acoustically excited by means of an excitation chamber
equipped with six loudspeakers, placed equidistantly around the circumference. By
harmonic excitation at frequencies away from the fundamental frequency f0, noise
level reductions (at f0) of up to 6 dB were achieved.

The aim of the present work is to develop a numerical method for simulating the
hole-tone problem with the jet subjected to non-axisymmetric ‘mechanical’ (‘non-
acoustic’) perturbations, by piezoelectric or electro-mechanical actuators mounted
at the nozzle exit, similar to the concept of Kasagi [7]. This is expected to be more
efficient than acoustic perturbations [4], and the aim is to study/verify this carefully
before experimental verification, using a three-dimensional vortex method.

2. Flow Model

The shear layer of the jet issuing from the nozzle is represented in a lumped form,
by a ‘necklace’ of discrete vortex rings. These rings are disturbed mechanically
at the nozzle exit such that they loose their natural axisymmetric form, and are
thus represented by three-dimensional vortex filaments. The induced velocity ui =
(u1, u2, u3)i, at position xi = (x1, x2, x3)i and time t, from J vortex rings represented
by the space curves rj(ξ, t), is given by

ui(xi, t) = −
J∑

j=1

Γj

4π

∫

ξ

{xi(t)− rj(ξ, t)} × ∂rj/∂ξ

{|xi(t)− rj(ξ, t)|2 + ασ2
j (ξ, t)}

3
2

dξ, (1)
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where Γj is the strength (circulation) of the j’th vortex, ξ is a material (vortex)
coordinate, and σj(ξ, t) is the core radius. The parameter α represents the vorticity
distribution within the core; for a Gaussian distribution, α ≈ 0.413.

The space curves rj(ξ, t) are discretized by employing K marker points on each
curve (vortex ring), connected via cubic splines or, optionally, via straight segments.
The integration in (1) is carried out using Gauss-Legendre quadrature when splines
are used, and analytically when straight segments are used.

A vortex ring is released from the nozzle at each time step in the simulation.
[Earlier studies [5] have shown that the vortex shedding from the edge of the hole
in the end plate is insignificant.] The strength of the vortex ring to be released is
dictated by the Kutta condition.

The convection velocity of a shed vortex ring is dictated by the induced velocities
from all other vortex rings, plus the self-induced velocity, as indicated by (1). The
positions ri of the shed vortex filament ring marker points are updated by solving
numerically the system of ordinary differential equations dri(t)/dt = ui(ri, t).

The solid surfaces are represented by quadrilateral vortex panels, made up of four
straight vortex filaments, as indicated in Fig. 2. The inviscid boundary condition of
zero normal velocity is imposed at control points in the center of these panels. The
mean jet flow is provided by a number of panels placed on the ‘back’ of the nozzle
tube; see again Fig. 2. The strengths of the bound vortex panels are dictated by
the boundary conditions and by the mean jet velocity. The mechanical/piezoelectric
actuator system is simulated by periodical ‘edge wave’ deformations of the nozzle
end section, as illustrated also by Fig. 2.
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Figure 2. Illustration of the perturbation mechanism (actuator model). [For purpose of
illustration the amplitude is exaggerated.]

3. Aeroacoustic Model

The theory of vortex sound is applied to compute the sound generation. For low
Mach-number flows it is described by the inhomogeneous wave equation

c−2
0 ∂2p/∂t2 −∇2p = ρ0∇ · L, (2)

where p(x, t) is the acoustic pressure, L = ω × u is the Lamb vector, with the
vorticity ω given by ∇× u; ρ0 is the mean air density, and c0 the speed of sound.

In the present work (2) is solved in two different ways: (i) by using the compact
Green’s function approach; (ii) by using the boundary element method. A detailed
description of approach (i) can be found in e.g. [6]; accordingly only approach (ii)
will be described here.
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Based on the free space Green’s function the solution to (2) can be expressed as

p(x, t) = pv(x, t) +
1

4π

∫∫

Sb

{
[p̃]tr

∂

∂nb

(
1

rxb

)
−

[
∂p̃

∂t

]

tr

1

c0 rxb

∂rxb

∂nb

}
dS, (3)

where p̃ indicates the pressure difference across the end plate,
∫∫

Sb
. . . dS denotes

integration over one surface, and rxb = |x − xb| is the distance between the obser-
vation point x and a point xb on the end plate. The normal vector at xb is denoted
by nb. Square brackets with subscript tr indicate evaluation at the retarded time
tr = t− |x− xb|/c0. The ‘source term’ pv(x, t) is given by

pv(x, t) = − 1

4π

∫∫∫

y

[
Lj(y, tr)

xj − yj

r3
xy

+
∂Lj

∂t
(y, tr)

xj − yj

c0 r2
xy

]

tr

d3y, (4)

where summation over repeated subscript j’s applies. The pressure difference p̃ is
determined from the equation [9]

∂pv

∂na

(xa, t) +

∫∫

Sb

{
[p̃]tr

∂2

∂na∂nb

(
1

rab

)
−

[
∂p̃

∂t

]

tr

1

c0rab

∂2rab

∂na ∂nb

}
dS = 0, (5)

Equations (3) and (5) are discretized via the boundary element method.

4. Numerical Example and Concluding Remarks

Computations are carried out for a setup with nozzle and end plate hole diameter
d0 equal to 50 mm. The outer diameter of the end plate is 250 mm. The gap
length L is 50 mm, e.g., equal to d0. The mean velocity u0 of the air-jet is 10 m/s.
At 20 ◦C this corresponds to a Reynolds number Re = u0 d0/ν ≈ 3.3 × 104 and a
Mach number M = u0/c0 ≈ 0.03, where the speed of sound c0 = 340 m/s and the
kinematic viscosity ν = 1.5×10−5 m2/s. A number of side view ‘snapshots’ of the jet
during approximately one period os oscillation are shown in Fig. 3. The computed
fundamental frequency f0 ≈ 190 Hz, which is quite close to the experimentally
observed value of 196Hz.

The influence of nozzle-oscillations is exemplified by Fig. 4 which shows the sound
pressure levels (in dB) midway between nozzle exit and end plate, five nozzle diam-
eters away from the central axis. Part (a) is for the case without nozzle oscillations.
part (b) is for a case where the radius of the nozzle, in polar coordinates, is given
by r(θ, z) = r0(1 + ε sin(2θ) cos(2πfdt)(1 + z/r0)), 0 ≤ θ ≤ 2π, −r0 ≤ z ≤ 0 (with
nozzle exit at z = 0), ε = 1

60
, and fd = 300Hz. It is expected that the oscillating

nozzle can destroy the coherence of the ‘smoke rings’ and thus decrease the noise
generation. In the present example the noise level has however been significantly
increased, with the largest component at f ≈ fd/2. It is thus clear that appropriate
choices of amplitudes, modes and frequencies are very important in controlling the
hole-tone feedback cycle.
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Figure 3. Side view of the jet during approximately one period of oscillation. The nozzle
exit is at the abscissa position 2.5; the end plate with hole at position 3.5.
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Figure 4. Sound pressure levels (a) without and (b) with nozzle oscillations.
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