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Abstract. Lorentz forces originating from surface-mounted actuators of permanent magnets and

electrodes in weakly conducting fluids like seawater provide a convenient tool for separation con-

trol at hydrofoils. A well-known actuator design of alternating stripes of permanent magnets and

externally fed electrodes is considered which creates a mainly streamwise Lorentz force that is ex-

ponentially decaying in wall-normal direction. Separation control by steady forcing at the suction

side and by oscillatory forcing near the leading edge of a symmetric foil is investigated numeri-

cally, mostly in the post-stall regime. The results are based on direct numerical simulations in the

laminar flow regime in order to reveal basic control phenomena as well as on simulations using

turbulence modelling at higher Reynolds numbers which are closer to possible naval application.

By applying a strong enough steady control, separation can always be completely suppressed. The

scaling behaviour of the maximum lift gain ∆Cmax

L
in the turbulent regime nicely agrees with ex-

perimental results. – Oscillatory forcing always has to compete with the natural shedding process,

lock-in behavior may occur. Lift-optimum control for strong amplitudes is found in a frequency

band around the natural shedding frequency. In terms of the momentum coefficient describing

the control effort, appropriate excitation frequencies in relation to the natural vortex shedding

frequency allow for a more effective lift control than steady forcing for small lift gains; for large

lift enhancement the energetic effort seems to approach the level of steady control.

Key words: electromagnetic flow control, separation control, wings, numerical simulation, incom-

pressible flow.

1. Introduction

Separation control is an important issue in many industrial, aviation and marine ap-
plications, and a large variety of different control methods does exist [1]. Apart from
steady control schemes, active control allows for more distinct benefits in certain flow
configurations, as, e.g., proper time-periodic blowing and suction is known to en-
hance the lift of airfoils quite effectively as compared to steady blowing. Greenblatt
and Wygnanski [2] attribute this effect to the periodic excitation of the separating
shear-layer, thereby using far-field momentum to advantageously reorganize the vor-
tex shedding process at the suction side. Optimum control frequencies with respect
to lift enhancement found there are typically of O(1) based on chord length and free
stream velocity. Wu et. al [3] have performed two-dimensional RANS simulations
of the turbulent flow over an airfoil at post-stall angles of attack when periodic
blowing-suction near the leading edge is applied. Interestingly, in certain control
parameter ranges, the still separated flow became periodic or quasi-periodic, asso-
ciated with significant lift enhancement. The physical mechanisms responsible for
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this control are explained to be the non-linear mode competition of the two basic
constituents of the flow, the leading-edge shear layer and the vortex shedding from
the trailing edge.
The present paper is concerned with separation control by applying Lorentz forces
into the near-wall region of an hydrofoil by surface setups of electrodes and mag-
nets. We have in mind saltwater or electrolyte flows of weak electric conductivity
(σ ∼ O(10)S/m) where induction effects can be neglected and, besides externally
applied magnetic fields, electric currents are fed to the fluid in order to generate
Lorentz forces large enough for achieving control. Due to the momentum modi-
fication of the near-wall flow, a similarity to control by suction or blowing does
exist. However, an obvious advantage of the Lorentz force approach is that its
amplitude is easily adjustable in time by applying alternating currents up to high
frequencies. First efforts in applying Lorentz forces to weakly-conducting fluids were
undertaken more than 40 years ago [4,5]. Meanwhile, control of transition in a flat-
plate boundary layer [6], control of the turbulent boundary layer with respect to
drag reduction [7–12] and control of the flow around a circular cylinder [13,14] have
been discussed extensively. Hoarau et al. [19] have investigated the 3-D transition
around a NACA-0012 airfoil, and recently, first results on the separation control of
flow around hydrofoils were published [15–17].
Although most potential control problems experience turbulent flow conditions,
there is also particular interest in the transitional and low-Reynolds-number range
for, e.g. RPV’s and UAV’s in aviation or for, e.g., active hydrofoils in naval appli-
cations. In this paper, we first present DNS results which are limited to relatively
low chord Reynolds numbers but aimed to understand basic control effects. Second,
results of turbulent simulations are presented and compared with experimental re-
sults. Both, steady and oscillatory control, are investigated in a first step of 2-D
simulations as the surface tangential forcing weakens possible 3-D side effects in
both laminar and turbulent flows. The basic mechanisms of time-periodic control
were recently proven to work in the transitional range as control was achieved by
conventional blowing/suction [18] as well as by applying Lorentz forces in experi-
ments [15, 16]. In rotary or oscillatory control of the cylinder flow, in the literature
several authors have reported on a lock-in behaviour between excitation frequency
and vortex shedding frequency [21–24], and appropriate control techniques can lead
to, e.g., considerably reduced drag values [25,26]. Therefore, also for the oscillatory
control at an hydrofoil considered here, a large control receptivity at excitation fre-
quencies close to the main shedding frequency of the uncontrolled flow should be
expected.

2. Problem definition

2.1. Hydrofoil and Actuator

A particular profile named PTL-4 was chosen to allow later for comparison with
experimental results. The characteristic polynom of the foil is

p(x) = d(a1

√
x + a2x + a3x

2 + a4x
3 + a5x

4) (1)
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with the coefficients d = 0.1676154, a1 = 1.26854, a2 = −0.292071, a3 = −1.34964,
a4 = 0.478002, a5 = −0.104831. Hereby, 0 ≤ x ≤ 1 denotes the streamwise coordi-
nate scaled with the chordlength c. As can be seen from the left side of Fig. 1, the
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Figure 1. Left: Comparison of the PTL-4 hydrofoil with the shape of a NACA-17 profile.
Right: Sketch (cross-cut) of the actuator for generating a streamwise (x) Lorentz force

shape is rather close to that of a standard NACA-0017 profile.
Lorentz forces fL result from the cross product of current density j and magnetic
induction B, whereby the current density is given by Ohm’s law in moving media
j = σ(E + u × B). Neglecting induction, in the following we assume that only the
externally applied current density j0 = σE0 and the applied magnetic field B0 con-
tribute to the Lorentz force. A sketch of the actuator (cross-cut) is shown in the right
side of Fig. 1. It consists of an alternating arrangement of stripes of electrodes of
varying polarity and permanent magnets of varying magnetization direction (black
arrows). The width of both electrodes and permanent magnets is assumed to be
equal to a. Surface flush mounted, due to the crossing electric (dashed) and mag-
netic (solid) field lines, it creates a mainly streamwise (x) Lorentz volume force in
the fluid which, when averaging over the spanwise direction z, reads

fL =
π

8
j0M0e

−
π

a
yex . (2)

Hereby, M0 denotes the magnetization of the magnet. The spacing parameter a
determines the “penetration depth” of the Lorentz force; larger values of a lead to
Lorentz forces acting deeper inside the fluid. For more details we refer to [6]. Figure

U∞

magnets

F
L

electrodes

U∞

FL

magnets

electrodes

Figure 2. Foil with actuator for steady (left) and time-periodic (right) separation control

2 illustrates the actuator at the suction side of the hydrofoil for steady (left) and
time-periodic (right) separation control.
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2.2. Equations and Parameter

Based on chord length c of the hydrofoil and freestream velocity U0, the 2-D Navier-
Stokes equation for an incompressible fluid (∇ · u = 0) reads in dimensionless form

∂u

∂t
+ (u ∇)u = −∇p +

1

Re
∆u + N g(y∗) e−π c

a
y∗ et

∗. (3)

Hereby, y∗ measures the local wall-normal distance, and et
∗ denotes the correspond-

ing tangential direction vector along the foil. The shape function g(y∗) is zero
everywhere except above the active actuator range ∆x at the suction side where
g(y∗) = 1 holds; end effects are approximately taken into account by a linear growth
or decay of the force amplitude function g(y∗) in a small transition range at the ac-
tuator ends while maintaining the total momentum input. In case of time-periodic
forcing, by introducing a nondimensional frequency f based on chord length c and
freestream velocity U0, the shape function above the actuator reads

g(y∗, t) = cos (2π f t), f =
f̃ · c
U0

(4)

The two dimensionless characteristic parameter of the problem are

Re =
U0 c

ν
, N =

π

4

j0B0c

ρU2
0

(5)

whereby besides the usual Reynolds number Re the interaction parameter N de-
scribes the ratio of electromagnetic to inertial forces. Here, ν denotes the kinematic
viscosity of the fluid, and M0 = 2 B0 is used assuming infinitely long magnets. In
analogy to conventional control by blowing, a momentum coefficient may be in-
troduced which describes the ratio of the total momentum added by the Lorentz
force to the dynamic pressure. In case of steady control (where ∆x ≈ 1 holds) and
oscillatory control (based on the rms value of N) the momentum coefficient reads

Cµ =
a j0 B0

2ρU2
0

· ∆x

c
=

2 a

π c
N, c′µ =

√
2

2
Npeak 2a

πc

∆x

c
. (6)

Forces acting on the hydrofoil are due to friction and pressure but additionally due
to action of the Lorentz force. Based on dynamic pressure and chord length, the
dimensionless total drag and lift coefficients are defined as CD = Fx

ρ

2
U2

0
c
, CL = Fy

ρ

2
U2

0
c

where Fx and Fy denote the total force component per spanwise length unit in
streamwise and normal direction, respectively. The non-dimensional force input due
to the Lorentz force follows from integration over the area above the active part of
the actuator and reads for the lift coefficient as (for more details see [17])

CM =
2 N

c2

[
∫ ∫

dA e−π c

a
y∗ et

∗

]

· ey (7)

3. DNS

3.1. Simulation Details

A well-established spectral element code was used for the DNS simulations [27,
28] which has already been successfully applied to other EMHD problems [10, 11,
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13]. More simulation details can be found in [17]. The computational domain
with respect to width and position of the hydrofoil was chosen to resemble the
test section geometry of an existing experimental facility and should allow later for
comparison with experimental results. Grid generation for hydrofoils at different
angles of attack in the rectangular domain was done by using the pre-processing
capabilities of FIDAP [29]; typical grids consist of about 200 spectral elements and
ensure sufficient resolution at boundary and shear-layer regions in the near wake
while trying to avoid computational overhead in low-shear regions. The rectangular
domain ranges from −1 ≤ x ≤ 7 and −1.5 ≤ y ≤ 1.5; the center of gravity of the
hydrofoil is located at (x = 0.3, y = 0). The boundary conditions applied in the
simulations are no-slip (u = 0, v = 0) at the hydrofoil, freestream (u = 1, v = 0) at
inlet, top and bottom of the computational domain and an outflow condition at the
outlet. At validation runs, for Reynolds numbers up to Re = 600 under investigation
here, the final choice of 9x9 inner element resolution ensured lift and drag accuracy
of about ±1%.

3.2. Stationary Forces
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Y
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Figure 3. Snapshots of the flow at α=30o, Re=500 without control (left) and at Cµ = 1.61,
a/c = 0.1265 (right). Shown are streamtraces und contours of ux.

Figure 3 shows snapshots of the uncontrolled flow around the hydrofoil at an angle
of attack of 30o and the controlled flow under action of a momentum coefficient
of Cµ = 1.61 and a penetration depth of a/c = 0.1265 at a Reynolds number of
Re = 500. The flow without control clearly experiences separation, which can be
completely suppressed when applying control. Furthermore, at this large value of
the momentum coefficient, the controlled flow is almost steady, and a jet on the
suction side can already be detected.
The left side of Figure 4 shows the behavior of the time-averaged lift coefficient as

a function of the momentum coefficient at Re = 600, α = 30o. Hereby, in the force
balance, the momentum input due to the Lorentz force CM grows only linearly with
Cµ whereas the total lift coefficient CL seems to grow stronger than linearly. For
small values of Cµ, a quadratic dependence due to the separation delay is expected,
until the flow is completely attached. However, in our numerical investigation, this
might be disturbed by the finite channel width which influences the pressure field.
The variation of the penetration depth a/c offers a possiblity for reducing the energy
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Figure 4. Left: Lift coefficient CL as a function of the momentum coefficient Cµ. CL−CM

denotes the part of CL when the momentum input due to the Lorentz force CM is not
taken into account. Re = 600, α = 30o, a/c = 0.06325. Right: Lift gain by variation of
the penetration depth a/c at Re = 500, α = 30o.

effort needed to achieve some fixed lift gain. The right side of Figure 4 shows the
ratio of the lift CL(Cµ) at momentum coefficient Cµ divided by the uncontrolled lift
C0

L versus momentum coefficient Cµ for different values of the penetration depth a/c.
For large values of the momentum coefficient, the largest chosen penetration depth
performs best. At low control amplitudes, the smallest value of the penetration
depth a/c = 0.03163 gives only weak lift enhancement. In general, although the
lift-optimum penetration depth depends on the details of the flow configuration, it
seems to be advantageous to choose a/c not smaller than a characteristic boundary

layer thickness of the flow which is δlam ∼ 1/
√

Re ≈ 0.044 in the considered case.

3.3. Oscillatory Forcing
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Figure 5. Mean lift coefficient (left) and mean drag coefficient (right) versus excitation
frequency at different control amplitudes c′µ; a/c = 0.1265.

Oscillatory actuation was applied at the front part of the hydrofoil, whereby the
optimum position of the actuator depends on flow details as, e.g., the position of
the separation point. The following results were obtained at a Reynolds number of
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Re = 500 and an angle of attack of α = 30o where the uncontrolled flow is already
separated (see Fig. 3). Until noted otherwise, an active actuator range of 0.05 ≤
x/c ≤ 0.15 was chosen, and the penetration depth of the Lorentz force is a/c =
0.1265. Figure 5 summarizes the behaviour of the mean lift and drag coefficient
versus actuation frequency f at different values of the momentum coefficient c′µ. For
the weakest control of c′µ = 2.8% applied, there exist distinct maxima for both lift
and drag coefficient where a weak control influence is sufficient to advantageously
modify the process of vortex shedding. Stronger control in general leads to larger
gains in lift but also to larger drag penalties. Interestingly, the control frequencies
of the lift maxima are close to the shedding frequency of the uncontrolled flow
f0 = 0.233 and its harmonics. With growing control amplitude, largest lift and,
at the same time, largest drag, is observed more and more in a broad band of
frequencies around the natural shedding frequency, and the importance of higher
excitation frequencies decays. The lift gain obtained in the broad frequency band
mentioned above corresponds to only a modification of the natural vortex shedding
by a strong external excitation. Lock-in behavior of the lift coefficient with the
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Figure 6. Time signal of the lift coefficient CL without control and at various values of
the interaction parameter N and the control frequency f , superimposed with the corre-
sponding excitation signal of fixed artificial amplitude. Please note a modified CL-scaling
at c′µ = 11.4%, f = 0.235.

external excitation, well-known from oscillatory cylinder control [22,23,26,30] occurs
in certain frequency ranges near the natural shedding frequency f0 and its harmonics
as shown in Fig. 6 for two values of the momentum coefficient. Figure 7 shows
streamtraces of the time-averaged flow in case without control and with control at
c′µ = 0.11 for two selected frequencies. As might be also deduced from the size of
the separation bubble, control at f = 0.235 gives strongly enhanced lift, although
the flow does not attach completely, whereas at f = 0.53 lift enhancement is already
smaller. Although lift enhancement is usually coupled to drag penalty, as can be
seen from the left side in Fig. 8, the lift to drag ratio can clearly be enhanced by
oscillatory control.
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c′µ = 0 c′µ = 0.11, F+ = 0.235 c′µ = 0.11, F+ = 0.53

Figure 7. Streamtraces of the time-averaged flow without control (left) and for different
control frequencies F+ at Re = 500, α = 30o, c′µ = 0.11.
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Figure 8. Left: Lift to drag ratio CL/CD versus excitation frequency at different ampli-
tudes c′µ; a/c = 0.1265, α = 30o. Right: Comparison of the lift coefficient versus momen-
tum coefficient, obtained by steady (A: a/c = 0.06325, B: a/c = 0.1265) and oscillatory
forcing (C: a/c = 0.1265, f = 0.235), at Re = 500, α = 30o.

3.4. Comparison with steady control

Figure 8 compares on the right side the lift enhancement obtained at the optimum
frequency of f = 0.235 with results obtained by steady control at different values of
the penetration depth a/c. As mentioned above, the larger value of the penetration
depth a/c is preferable in case of steady control. But, at small values of the mo-
mentum coefficient, oscillatory control is clearly more effective than steady control
which here achieves only a small amount of separation delay, whereas oscillatory
control is already able to reorganize vortex shedding due to a large receptivity of
the uncontrolled flow to optimum control. For larger values of the momentum coef-
ficient, steady forcing might perform better as oscillatory forcing can not completely
suppress separation.

4. Turbulent simulations

4.1. Simulation details

First turbulent simulations were performed by using the commercial finite element
code FIDAP [29] and applying the extended k−ǫ model by Chen & Kim [32]. Details
of the geometry of the rectangular testsection where also a part of the experimental
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work was performed can be found in [16], a typical grid consists of about 10000 linear
elements with the near-wall resolution is ∆+ ≈ 1 for U-RANS simulations. Top and
bottom of the domain are no-slip walls; at inflow, freestream of 2% turbulence level
was used to force early transition. Although validation runs for a NACA-0015 profile
gave about 10-15% underestimation of the maximum lift at critical angle Cmax

L (αc)
in general due to obvious lacks in turbulence modelling, as will be seen later, there is
a good quantitative agreement of the scaling behavior of ∆Cmax

L with experimental
results.

4.2. Steady control
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Figure 9. Left: Lift enhancement and delay of stall by steady control at Re = 800000,
a/c = 0.06325; Right: Maximum lift gain versus momentum coefficient by steady control
in comparison with experimental results from [15].

Figure 9 shows on the left side the lift enhancement and the delay of stall due to
steady control at Re = 800000 for different values of the momentum coefficient
Cµ. The separation control leads to considerably larger maximum values of the
lift coefficient Cmax

L at larger angles of attack before stall occurs. As for certain
applications the maximum lift gain ∆Cmax

L = Cmax
L (Cµ)−Cmax

L (Cµ = 0) as function
of Cµ is of importance, on the right side of Fig. 9 the scaling behavior of ∆Cmax

L

versus Cµ is shown in comparison to experimental results of Weier [15]. Apart from
the nice agreement, the slight over–estimation of the maximum lift gain obtained
numerically as compared to experimental data can be attributed to possible 3-D
effects, electrolytic bubble production in the experiment and the simple turbulence
model applied. However, the strong effect of separation control can not be found

in the figure, as the overall scaling of ∆Cmax
L is only like ∼ C

1

2

µ . As the electrical

power density can be estimated as pE ∼ j2

0

σ
∼ U4

∞
· C2

µ for steady forcing, the effort
for ∆Cmax

L finally scales as pE ∼ U4
∞
· (∆Cmax

L )4 which makes applications at large
Reynolds numbers energetically expensive. However, larger magnetic fields applied
would strongly reduce the energy consumption as pE ∼ B−2

0 which gives some future
perspective.
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4.3. Oscillatory control

First results for oscillatory control are shown at the left side of Fig. 10 for an angle
of attack α = 17o and an active actuator range of 0.07 ≤ x/c ≤ 0.12 at Re =
800000. As expected, lift-optimum control corresponds to a frequency of f+ ≈ 1.
Interestingly, lock-in phenomena as described by Wu [3] were also found. The r.h.s. of
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Figure 10. Left: Lift coefficient CL versus control frequency F+ at Re = 800000, a/c =
0.06325, α = 17o. The optimum control frequency is close to one. Right: Comparison of
steady and oscillatory forcing at F+ = 1 for α = 17o and for α = 21o for which additionally
(♦) an alternative actuator position 0.02 ≤ x/c ≤ 0.07 is shown.

Fig. 10 shows first results of the comparison of steady and periodic control where
additionally the case α = 21o with two different actuator locations was investigated
for oscillatory control. As can be seen, in case of α = 21o, for small values of
the momentum coefficient Cµ, oscillatory control can be more efficient than steady
control, but larger lift gains seem to require similar energy efforts as steady control.

5. Discussion

Control by steady forcing can achieve full reattachement at strong enough control
amplitudes but at high cost. Oscillatory control, properly designed with respect
to location, frequency and amplitude, can be more efficient for small values of lift
enhancement than steady control which can be achieved at small values of the mo-
mentum coefficient. Interesting lock-in phenomena were found in both the laminar
and the turbulent flow regime which deserve further investigation. Lift-optimum
control frequencies as recently noted also in the literature [3,31] were found near the
natural shedding frequency of the uncontrolled flow which holds in the laminar and
in the turbulent flow regime as oscillatory control always has to struggle with vortex
shedding. Currently, more turbulent simulations, also with different modelling, are
underway, combined with new PIV measurements of the flow.
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