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Abstract. In the present study, we apply a linear proportional control to flow over a sphere for 
reduction of drag and lift fluctuations. For this purpose, we measure the radial velocity along the 
centerline in the wake and provide blowing and suction at a part of sphere surface based on the 
measured velocity. Zero-net mass flow rate is satisfied during the control. This control is 
applied to the flow over a sphere at Re=300 and 425. We vary the sensing location at 
0.8 1.3sd x d≤ ≤  and find that the most effective sensing region coincides with the location at 
which negative maximum correlation between the lift and sensing-velocity directions occurs. As 
a result, the lift and drag fluctuations are significantly reduced. 
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1. Introduction  
 

The vortex shedding behind a bluff body produces the drag and lift 
fluctuations, and thus it is important to reduce these fluctuations in practical 
situations by introducing some control actions. Therefore, many control methods 
have been suggested to weaken or annihilate vortex shedding behind a bluff body. 
However, most methods presented so far are for two-dimensional bodies and 
control methods for three-dimensional bodies are still limited [4]. 

The sphere is a representative shape of three-dimensional bluff bodies. 
Although the sphere is a simple geometry, the vortex shedding behind it is 
completely three-dimensional and complex. Because of these three-
dimensionality and complexity, the control of this flow is not an easy task. 
Therefore, only a few studies for control of flow over a sphere have been 
suggested so far: for example, roughness by Achenbach [1], dimples by Bearman 
and Harvey [3] and Choi et al. [5], high-frequency forcing by Kim and Durbin 
[8], ventilation by Suryanarayana et al. [12], high-frequency forcing by Jeon et al. 
[6]. Although these methods are quite effective, they are valid only for subcritical 
Reynolds numbers. 

In the present study, we focus on the flow over a sphere at low Reynolds 
numbers and apply a linear proportional control to this flow to see if it can reduce 
the lift and drag fluctuations. Our linear proportional control is based on that 
proposed by Park et al. [11] applied for the control of flow over a two-
dimensional circular cylinder. In that study, they successfully suppressed two-
dimensional vortex shedding at low Reynolds numbers. Therefore, it should be 
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interesting to investigate the applicability of this control method to three-
dimensional vortex shedding like the flow considered in the present study. 
 
 
2. Numerical details 
 
An immersed boundary method [9] is used to simulate flow over a sphere. The 
governing equation is the incompressible Navier-Stokes and continuity equations 
with the immersed boundary method in the cylindrical coordinates: 
 

 
21

Re
i ji i

i
j i j j

u uu up f
t x x x x

∂∂ ∂∂
+ = − + +

∂ ∂ ∂ ∂ ∂
,           (1) 

0i

i

u q
x
∂

− =
∂

,               (2) 

 
where t  is time, ix  are the cylindrical coordinates, iu  are the corresponding 
velocity components, p  is the pressure and Re U d ν∞=  is the Reynolds number. 
Here U∞  is the free-stream velocity, d  is the sphere diameter, and ν  is the 
kinematic viscosity. if  are the momentum forcing and q  is the mass source/sink 
proposed by Kim et al. [9]  
To solve these equations, we use the fractional step method [10]. A semi-implicit 
method proposed by Akselvoll and Moin [2] is used for the time integration. A 
Dirichlet boundary condition ( 1xu = , 0ru = , 0uθ = ) is used for inflow and far-
field boundaries and a convective boundary condition ( 0i iu t c u x∂ ∂ + ∂ ∂ = , 
where c is the space-averaged streamwise velocity at the exit) is used for the 
outflow boundary condition. The size of computational domain is 15 15d x d− ≤ ≤ , 
0 15r d≤ ≤  and 0 2θ π≤ < . We simulate the flow at two different Reynolds 
numbers (Re=300 and 425). Without control, the vortical structures behind the 
sphere are unsteady planar symmetric at Re=300 and unsteady asymmetric at 
Re=425, respectively. The numbers of grid points are 289( ) 161( ) 65( )x r θ× ×  and 
449( ) 161( ) 65( )x r θ× × , respectively, for Re=300 and 425.  
 
 
3. Linear proportional control 

 
We apply a linear proportional control similar to that proposed by Park et al. 

[11]. The velocity at the centerline in the wake region is measured for feedback 
and the control input (blowing/suction) at a part of the sphere surface is 
determined by the measured velocity as follows (Figure 1): 
 

,( ) cos( ).r senseduψ θ α θ θ ′= −              (3) 
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Figure 1. Schematic diagram of the linear proportional control. 

 
 

 
 
Figure 2. Time histories of the drag coefficient and phase diagram of the lift coefficient 
(without control): ---, Re=300; —, Re=425. (a) Time histories of drag coefficient; (b) phase 
diagram of the lift coefficient at Re=300; (c) phase diagram of the lift coefficient at Re=425. 
 
Here, ψ  is the wall-normal actuation velocity (blowing/suction), θ  is the 
azimuthal angle, α  is the feedback gain, ,r sensedu  is the magnitude of measured 
velocity at the sensing position, sx , and θ ′  is the azimuthal angle of measured 
velocity. Thus, the blowing/suction varies along the azimuthal direction and 
maximum blowing and suction occur in phase and out of phase to the measured 
velocity at sx . Also the amplitude of blowing/suction linearly increases as the  
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Figure 3. Time histories of the drag and lift coefficients and phase diagram (Re=425): (a) time 
histories of drag coefficient; (b) time histories of the lift coefficient; (c) phase diagram of the lift 
fluctuations.  —, Without control; ---, with control. Shown here is the case of  1.2sx d=  and 

0.5α = − . 
 
measured velocity increases. Various sensing positions are tested. For the 
actuation location, we set 100oφ =  and 20oφΔ =  (see Figure 1). 
 
 
4. Results 

 
The laminar flow over a sphere has four different flow regimes. The vortical 

structures in the wake are steady axisymmetric, steady planar symmetric, 
unsteady planar symmetric and unsteady asymmetric as the Reynolds number 
increases. We consider the cases of Re=300 and 425, at which the flows are 
unsteady planar symmetric and unsteady asymmetric, respectively. The results of 
base-flow simulations agree well with those of the previous study [7]. Figure 2 
shows the drag and lift coefficients without control. As shown in Figure 2, the 
drag and lift fluctuations at Re=425 are much larger than those at Re=300. Thus, 
we focus on the case of Re=425 mainly in this study. 

For the feedback, we choose the sensing position ( sx ) and amplification 
coefficient (α ). Among various 'sx s and 'α s, the most effective sensing position  
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Figure 4. Time histories of the measured velocity and actuation velocity ( 1.2sx d=  and 

0.5α = − ; Re=425): (a) magnitude of measured velocity; (b) azimuthal angle of measured 
velocity; (c) azimuthal angle and magnitude of maximum actuation for / 300tU d∞ ≤ ; (d) 
azimuthal angle and magnitude of maximum actuation for / 300tU d∞ > . 
 
 
 

 
 
Figure 5. Variations of the drag coefficient with the sensing position and feedback gain 
(Re=425): (a)  ---, / 1.1sx d = ; —, 1.2 ; …, 1.3  ( 0.5α = − ); (b) ---, 0.4α = − ; —, 0.5− ; …, 0.6−  
( 1.2sx d= ). 
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Figure 6. Correlation of the azimuthal angles between the lift and measured velocity (Re=425). 

 

 
 
Figure 7. Time histories of the drag and lift coefficients (Re=300): —, without control; ---, with 

control. (a) CD; (b) CL. 
 
and amplitude are 1.2sx d=  and 0.5α = − , respectively. Figure 3 shows the time 
histories of drag and lift coefficients and the phase diagram at the final control 
state. Here, the lift coefficient is defined as 2 2

L y zC C C= + . The drag and lift 
fluctuations are significantly reduced by the control. However, the mean drag is 
almost unchanged. Figure 4 shows the variations of measured velocity and 
maximum actuation velocity. As shown in Figure 4, at the beginning of the 
control, the magnitude and azimuthal angle ( θ ′ ) of measured velocity vary 
significantly. At / 300tU d∞ > , θ ′  is nearly fixed to be 55o and 235o  (Figure 4 
(b)). Therefore, the azimuthal angle of maximum actuation follows that of 'θ  
(Figure 4 (d)).  

The present control method strongly depends on the feedback gain α  and 
sensing position sx . As shown in Figure 5, when the sensing position or the 
feedback gain is changed slightly, the drag fluctuations do not decrease and even 
increase.  

The fluctuations of lift coefficient are closely related with vortex shedding, 
and thus it is important to know the sensor location at which the radial velocity 
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along the centerline in the wake is connected with vortex shedding. For this 
purpose, we define a correlation function as follows: 
 

( )
0

cos
( ) ,L r

T

C u dt
C x

T

θ θ−
= ∫              (4) 

 
where 

LCθ  is the azimuthal angle of lift direction, 
ruθ  is the azimuthal angle of the 

direction of measured velocity at the sensing location and T is the time period of 
averaging. The value of ( )C x  becomes 1 when the directions of lift and measured 
velocity are equal to each other, and -1 when the directions are opposite. Thus, 
when ( ) 1C x → , the lift force and measured velocity are well correlated. Figure 6 
shows the variation of ( )C x  with sx . One can observe a strong negative correlation 
at 1.2sx d= . This result agrees well with the sx  location where the control performs 
well.  

At Re=300, the fluctuations of drag and lift are also significantly reduced by 
the control (Figure 7). The feedback gain and the sensing position for successful 
results are 1.0α=−  and 1.2sx d= , respectively.  
 
 
5. Conclusion 

The objective of the present study was to reduce the drag and lift fluctuations 
for flow over a sphere using a linear proportional control. The radial velocity at 
the centerline in the wake region was measured for the feedback and the control 
input was the blowing/suction at a part of the sphere surface. The azimuthal 
angle of maximum blowing was in phase or out of phase to the measured 
velocity according to the sign of feedback gain and amplitude of blowing/suction 
was proportional to the measured velocity. This linear proportional control was 
very sensitive to the sensing location. Using the present linear proportional 
control, the drag and lift fluctuations were significantly reduced for both Re=300 
and 425. It was found that the best sensing location for the present control is very 
well correlated with the radial velocity induced by the vortex shedding. 
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