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Abstract A numerical approach is developed to study the effect on a fluid of the regular oscil-
lations of an array of flexible cilia which hinge around points on a wall. The specific applica-
tion studied concerns the ctenophore Pleurobrachia pileus, a small marine invertebrate of quasi-
spherical shape and diameter of the order of the centimeter which swims in water thanks to the
rhythmic beating of eight rows of hair-like cilia aligned along its body. Only one row of cilia is
studied here, and the paper is limited to two-dimensional flow cases. The technique presented is
however general enough to allow its application to a variety of fluid-structure interaction prob-
lems. Results show that the expended power increases with the increase of the beating frequency,
in qualitative greement with experiments.

1. Introduction

General scope

Cilia and flagella are little-noticed but pervasive features of animals and plants, accomplishing -
through their movement or simply through their presence - a large variety of tasks [1]. Motile cilia
are whip-like appendages extending from the surface of many types of cells, and designed to move
either the cell itself or the fluid around it. Their behavior is a consequence of their complex internal
structure, which is essentially the same in both eukaryotic flagella and cilia, and is based on the
interaction of a set of microtubules. These can bend under the action of dynein arms, powered by
ATP, thus generating typical oscillations. Progress in the computational modelling of the internal
axoneme of a flagellum has been recently reviewed by Fauci & Dillon [2]. From the ”external”
point of view, the major differences between motile cilia and flagella can be seen (i) in their length,
(ii) in the fact that cilia appear in densily packed arrays, whereas flagella act mostly individually
or in couples, and (iii) in the characteristics of their beating which determines the direction of the
induced thrust.

Though this paper will be devoted to a very specific kind of ciliary motion, it is not useless to
briefly outline a few of the functions played by such organelles, to provide an idea of their useful-
ness and broad range of applications:

• a single flagellum is used by sperm cells to move forward;
• in all female mammals, the beating of cilia in the Fallopian tubes moves the ovum from the

ovary to the uterus;
• about 80% of the epithelial cells in the human trachea are ciliated. Cilia sweep mucus and

trapped particles into the throat where they are usually swallowed and expelled;
• the cochlea in the inner ear is lined with cilia, which oscillate after sensing vibrations trans-

ferred from the middle ear thus triggering the generation of nerve impulses, conveyed to the
brain as bursts of acoustic information;

• the asymmetric motion of embryonic fluid produced by beating cilia affects the expression
of genes located on the left hand side of the embryo of many vertebrates. The same genes
remain inactive on the right hand side of the body, thus apparently determining inner organ
placement and the left-right asymmetry in the body axis [3];

• ciliary defects can lead to several human diseases [4].
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The interaction of cilia and flagella with their environment has attracted in the last half century
the interest of physicists and engineers, motivated also by the possible use of ciliated actuators as
micro-mixers, for flow control in tiny biosensors, or as micropumps for drug-delivery systems.

The study of the hydrodynamics of a beating flagellum was initiated in 1951 by G.I. Taylor [5]
who analyzed the locomotion induced on a body by a tail beating in a regular manner, and found
an approximate relation linking the velocity of the organism to the propagation speed of the tail
wave. Other studies followed in which many cilia, covering flat or curved surfaces and oscillat-
ing synchronously, were considered and for which local models of the hydrodynamic interactions
between cilia and the surrounding fluid were needed. These research activities were initiated with
the observation that organisms appear to benefit from adjusting the phase relationship of the beat
patterns of neighboring cilia, and that metachronal waves are the rule in the oscillations of cilia
and flagella. The early activity is comprehensively reviewed by Brennen & Winet [6], and is
mostly focussed on isolating and understanding aspects of the self-propelling behavior. To sim-
plify things, inertial effects were neglected, because of the small dimensions and low velocities
at play. The more or less densely packed arrays of cilia were treated by local interaction models
which, despite the approximations made, were quite successful at reproducing global features of
the motion. They can be grouped into two categories: the envelope model [5, 7, 8, 9, 10, 11] and
the sublayer model [9, 10, 12, 13, 14]. In the envelope model the cilia are assumed to be closely
packed together so that the fluid effectively sees a waving material surface enveloping the top of
the layer. The principal limitations of this approach lie in the small amplitude approximation for
the oscillations of the material surface and in the impermeability and no-slip condition imposed at
the envelope sheet. The sublayer approach is not limited to small amplitudes and models the distri-
bution of Stokes flow force singularities along each cilium with an equivalent body force. The key
assumption here is in how the interaction among individual cilia is modelled: in the formulation
by Blake [9] such an interaction force is steady, whereas Keller, Wu and Brennen [12] improved
things by including unsteadiness. Both models yield results in qualitative agreement with obser-
vations in their respective ranges of applicability. Clearly the details of the hydrodynamics within
the cilia array and the effect of possibly non-negligible inertial terms posed problems which, until
recently, were overwhelming.

In more recent times, advances in experimental techniques have rendered the problem amenable
to laboratory investigation and some papers appeared which questioned the hydrodynamic results
of the proposed models [15, 16]. Progress in computational fluid dynamics and in the available
hardware make the problem tractable also by a numerical modelling approach.

Configuration studied

Figure 1. Propulsive row of comb
plates on a Pleurobrachia.

To fix things we have considered a very specific case, the loco-
motion characteristics of the ctenophore Pleurobrachia pileus
(commonly known as the ”sea gooseberry”) which, as we will
see below, is outside the range of approximation of former
models. In such a small organism (cf. figure 1) the thickness
of the layer of cilia is much smaller than the body dimension,
so that it is appropriate to consider a flat layer of cilia ex-
hibiting planar beat patterns. Propulsion is produced by the
oscillations, at a particular frequency, of eight rows of comb
plates, disposed around the body and aligned with it, each one
of which is composed by hundred thousands or more cilia.
The beating pattern exhibits an antiplectic metachronism, i.e. each individual cilium (or comb)
presents a definite phase relationship with its neighbours, and the wave propagates in a direction
opposite to the effective stroke. We will study the influence of beating parameters on the power
output of the mechanism. Different beating patterns will be tested, covering an appropriate range
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of frequencies and wavelengths.
Figure 2a shows the positions occupied by a cilium within one time period of the antiplectic
wave; during the effective stroke (towards the left) the cilium is straight, while in the recovery
phase it is bent so that a significant portion of it moves tangentially to the induced stream, rather
than normally. Considering an array of cilia, to model the Pleurobrachia’s comb plates, when
metachronal strokes are brought towards the left, a right-propagating wave is produced and the
body is propelled to the right (cf. Figure 2b). The aim of this paper is to focus on this propulsive
mechanism, by looking at the action of a comb row on the surrounding fluid.

(a) Motion of a single cilium starting from rest. (b) One antiplectic period.
Figure 2. Antiplectic beat pattern of the cilia of the Pleurobrachia. (a) Successive images, equally
spaced in time, must be seen as in a comic strip. (b) Time increases from top to bottom; the
organism is propelled towards the right, in the same direction as the metachronal wave.

2. Numerical procedure

Cilia position and velocity are digitized from experimental data and imposed by using an immersed
boundary method (IBM) [17]. The Reynolds number, based on tip speed of the cilium, its length
and the kinematic viscosity of water, ranges from 50 to 200; since the Stokes approximation in not
tenable, a Direct Numerical Simulation software, NTMIX (8th order in space, 3rd order in time
with an explicit scheme, variables are not staggered in the grid), is used to solve the incompressible
laminar flow problem [18]. The numerical resolution is performed by decomposing the main
problem into three subproblems (extraction of position and velocity of cilia, IBM, fluid problem)
that are controlled by a coupler, PALM [19], to ensure a straightforward development towards
more general applications for fluid-structure interaction problems.

Validation

To validate the numerical tool, two test cases have been considered: in the first test case a two-
dimensional rigid plate of lenght L hinges on a point in the lower wall and beats periodically; the
domain of integration of the equations is square and has dimensions 2L × 2L (lower and upper
boundaries are no-slip walls, left and right boundaries are periodic). The lower extremity of the
plate is centered in the lower wall, and the angle formed by the plate with the vertical axis is
α(t) = π

4 cos(2πft), with f the beating frequency (cf. figure 3a). The numerical discretization
employs a regular 32 × 32 cartesian grid. The second test case considers the motion of a single
deformable cilium; such a movement replicates the measurements by Barlow et al. [16] (see fig-
ure 3b). The computational domain in this case is rectangular, with dimensions 2L× 4L, and the
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grid is composed by 32× 64 regularly distributed points. The cilium is decomposed into 40 iden-
tical segments, and its motion is described by the angular deviation between one segment and its
immediate neighbors. The angular position and velocity of each segment is obtained from a look-
up table and a simple linear interpolation in time is performed to obtain these data at the discrete
time levels of the computations. Within one beat cycle we normally perform several thousand time
steps and hence we need the same number of intermediate cilium’s positions, whereas Barlow et
al. [16] provide data for 12 intermediate positions. For the characteristic case of f = 20 Hz and
L = 1 mm, the maximal velocity attained at the tip is π2Lf/2 = 98.7 mm/s. Thus, the Reynolds
number in water is of order one hundred.

(a) Beating rigid plate (b) Beating flexible cilium

Figure 3. Test cases considered. In case (b), the arrow shows the trajectory of the tip of the cilium.

Immersed Boundary methods

The accuracy of imposing a prescribed time-dependent velocity field within the flow has been
tested for a few different implementations of the IBM, along the lines of Fadlun et al. [20]. To
match the cilium velocity distribution V to that on the boundary S corresponding to the cilium
position, a volume force field f is introduced in the computational domain. The incompressible
Navier-Stokes equations are then:

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + f ; ∇ · u = 0. (1)

Two strategies are examined to specify numerically the proper volume force field:

• According to a technique which we call the feedback forcing technique, the volume force f ,
for a solid boundary located at xs = (xs, ys) at time t and moving at speed V, is defined as:

f(xs, t) = αf

∫ t

0
[u(xs, t)−V(xs, t)] dt′ + βf [u(xs, t)−V(xs, t)] . (2)

In this expression αf and βf are negative constants, heuristically determined so that a mea-
sure of the difference u(xs, t)−V(xs, t) is minimized. This formulation displays a damped
oscillator’s behavior, with αf proportional to the frequency of the oscillations and with βf

a damping factor.
• A second approach, known as the direct forcing method, is based on the discrete expression

of the Navier-Stokes equations. Indicating with l the discrete time level, and with RHS the
vector containing the viscous, convective and pressure terms, one obtains:

f l+1(x, t) =
Vl+1 − ul

∆t
−RHSl. (3)

The advantage of this method is that no tunable constants are required; the approach used
here is explicit (because so is the NTMIX code), although in the original formulation an
implicit algorithm was proposed [20].
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A second crucial step in the IBM is the interpolation strategy. This is even more delicate in the
present setting, because of the rapidly moving boundary, and the small dimensions of the moving
bodies. Indeed, the position of each cilium is specified in the continuum and, in the feedback
forcing technique, the volume force f(xs, t) must be distributed among the grid points surrounding
the bodies in motion. In the direct forcing approach, it is a measure of the discrete target velocity
Vl+1 that must be applied to the appropriate grid points. Two kinds of techniques are used in
this paper, for each of the two volume forcing approaches tested: one is called the ”distribution
strategy” and the second is the ”linear interpolation strategy”.

We start by observing that each cilium is made up by M points, and moves in a computational
domain containing about N2 cells, with M > N (for example M=40 and N=16). In the ”distri-
bution strategy”, inspired by Peskin [21], for each of the M points within a cilium xs, the closest
cells Xi,j in the grid are searched for. The indices i and j indicate, respectively, the discretization
nodes along the wall-parallel direction, x, and the wall-normal direction, y; the corresponding
velocity components are called u and v. The properties of the cilium are spread among the 24 grid
points neighboring Xi,j by multiplying either the discrete forcing function or the target velocity
by a filter function h(i, j;xs) (cf. figure 4a). When a grid point Xi,j is influenced by more than
one xs an averaging procedure is performed. The chosen filter function is:

h(i, j;xs) =
1− tanh

(
r−1
0.5

)
2

; r =

√(
xs −Xi,j

∆x

)2

+
(

ys − Yi,j

∆y

)2

. (4)

In the ”linear interpolation strategy”, when two successive points within the discretized cilium
cross a computational grid line, for example when the cilium intersects the horizontal line j = 4
(see figure 4b), a linear interpolation is applied to the two horizontal cells to the left and to the
right of the intersection point. A similar procedure is carried out when the cilium crosses a vertical
grid line. In the figure, the grid point labelled with i = 3, j = 4 is hence evaluated twice (with an
interpolation along the horizontal axis j = 4, and with another interpolation along the vertical axis
i = 3); the two components of the velocity in that grid point are finally obtained through simple
averaging.

In the feedback forcing approach, the volume force f(xs, t) is applied to all the points in the
discretization stencil; all other nodes have no source term applied to them. For the direct forc-
ing technique, to obtain the velocity field ul+1

i,j we initialize with ul
i,j , and correct the velocity

components in the stencil around the cilium on the basis of V(xs, t) at time step l + 1.

(a) Distribution strategy (b) Linear interpolation strategy
Figure 4. Interpolation strategies; all the grid points in the discretization stencil are represented
with open circles.

An extensive study has been conducted to assess the best technique to treat this moving boundary
problem, and it is concluded that a feedback forcing approach ”without memory”, i.e. without the
time integration term, αf = 0, and with βf = −1× 105 works very well when it is coupled with
the distribution strategy. Employing a non-zero value of αf leads to unstable simulations, because
of the high frequency displacement of the interior moving boundary. The large variations in the
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amplitude of the velocity and in the direction of the different segments which compose a cilium
- and the way the exact movement of the body is discretized in the available grid - can be repre-
sented in several manners; we have chosen to display them in two ways which highlight possible
shortcomings of the method. The most straightforward representation is that which displays, for
different points within the cilium, the amplitude of the corresponding velocity vector as a function
of time. Such a representation has been chosen for example in figure 5a for four different points
within the rigidly beating cilium (first test case). Comparisons against the exact velocity (plotted
with dashed lines) shows that the approximation is good, except near the tip of the body where
an error of up to 7% occurs. Part of the error stems from the fact that to obtain the approximate
value of the velocity for each point on the cilium, we have to perform a bilinear interpolation, after
having identified the four nodes of the mesh which surround the chosen point on the cilium (since
such a point would but very rarely coincide with a grid node). The second way to represent the
data consists in plotting the u-velocity component against the v component of different points on
the cilium in the course of time. Such a display, also known as the hodograph plot, highlights the
fact that errors at the tip of the cilium occur in correspondence to the largest positive values of the
vertical velocity, i.e. in the acceleration phase from rest of the rigidly beating plate (see figure 5b).
In this type of plot we have represented the numerically obtained velocity data points with dots,
and the prescribed motion with a thin, solid line.

(a) Amplitude of the velocity vector versus time (b) Hodograph plane

Figure 5. Velocity at different points within the rigidly beating cilium.

It is found that the least accurate strategy is that which employs the direct forcing approach to-
gether with the linear interpolation strategy. This is probably due to the explicit discretization
scheme used in the code (which causes exceedingly small time steps to yield results comparable
to those displayed in figure 5), and to the fact that NTMIX employs a compact 8th order scheme,
while the linear interpolation is only 2nd order accurate.

Figure 6 illustrates the results obtained for the realistic beating of a single flexible cilium (second
test case). Also in this case the more accurate approach is found to be that which combines the
feedback forcing technique (with αf = 0) together with the distribution strategy. Two beating
cycles are shown in figure 6a; from the hodograph plane representation it appears that now the
largest errors with respect to the target velocity occur halfway through the effective stroke phase
of the cilium, when the vertical velocity attains its minimum value. In this case the maximum error
in velocity amplitude between the imposed value and the numerical value are at the most equal to
10% and occur again at the cilium tip.

In the initial transient, when the cilium starts oscillating in a fluid at rest, the behavior is as dis-
played in figure 2a where the velocity vectors are plotted together with color contours of the
amplitude. During the effective stroke phase, when the cilium is almost straight, a high velocity
region is created behind the cilium, near its tip. In the recovery phase, when a large portion of the
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cilium moves quasi-tangentially to the wall, a vortex dipole is formed. In the subsequent cycle (not
shown), this dipole is first sucked towards the wall and then ejected away from it. It is precisely
this kind of behavior which lies at the heart of the propulsive efficiency of the Pleurobrachia.

We consider the method developed in this study an accurate procedure to analyze the flow field
around bodies moving at relatively high frequencies within a fluid; we thus proceed with a para-
metric study of the motion of arrays of cilia executing an antiplectic metachronal wave, with the
goal of identifying efficient beating parameters.

(a) Amplitude of the velocity vector versus time (b) Hodograph plane

Figure 6. Velocity at different points within a realistically beating cilium.

3. Results
A snapshot of the velocity vectors is provided in figure 7a for the case of 9 comb plates beating at
5Hz, together with colour surfaces of the amplitude of the velocity.

(a) Snapshots of velocity vectors. (b) Longitudinal velocity averaged in space and time.

Figure 7. f = 5Hz and n = 9 cilia.

The mean streamwise velocity profile is given in figure 7b. The wavelength λ of the metachronal
wave is always linked to the number of cilia n present through the relation: λ = nL/2, i.e. the
spacing between any two neighboring combs along the wall is fixed at L/2. The figure shows that
in the sublayer region (0 < y ≤ L) the flow is sucked towards the wall during the effective stroke,
when cilia are widely spaced apart, and ejected away from it during the recovery phase, when
cilia are clustered near one another. The mean longitudinal velocity has a boundary layer-like
profile lifted from the wall by L/2, in qualitative agreement with analytical results by Keller, Wu
& Brennen [12].

The propulsive performances of the Pleurobrachia are related to the blowing/suction effect and are
a direct function of the beating parameters. A study is thus called for to identify optimal parameters
and to verify whether they match the swimming characteristics of the animal. The ability to
associate the beating parameters to specific physical events is a prerequisite to the conception and
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realization of a technology capable of exploiting well-defined flow features and mimicking the
motion of the Pleurobrachia.
Figures 8a and 8b show the |u| and v phase-averaged velocity profiles at y = 0.9L as function
of x/λ for the same case as above. The modulus of the longitudinal component of the velocity
and the vertical component display simultaneously their maximum values approximately halfway
through the wavelength, i.e. towards the end of the effective stroke phase, while |u| attains its
minimum value during the recovery phase. The v component is equally distributed in x about
positive and negative values (cf. figure 8b), mimicking blowing and suction through a fictitious
wall; this indicates that the assumptions inherent to the analytical envelope model [10, 11] would
be poorly satisfied in this case. Integrating along the longitudinal distance, an average v close
to zero is found, whereas an average velocity umean equal to −82 mm/s at y = 0.9L is found,
reflecting the fact that the organism is propelled towards the right.

(a) Modulus of the longitudinal velocity |u|. (b) Vertical velocity v.

Figure 8. Phase-averaged velocity profiles at y = 0.9L.

It is simple for this case to obtain the kinetic energy equation, and find the terms which contribute
the most to the energy budget. By taking the integral over a volume V (limited in y between 0 and
L and running through a wavelength in x) of the scalar product of the Navier-Stokes equations
with u, it is easy to find:

d

dt

∫
V

(
1
2
u.u) dV = P + D + S, (5)

where P is a production term, D is a negative-definite dissipation term, and S is a source term
related to the presence of a volume force f , with

P =
∫

V
(−u v) (uy + vx) dV, (6)

D = −ν

∫
V

[
(ux)2 + (vx)2 + (uy)2 + (vy)2

]
dV, (7)

S =
∫

V
u.f dV, (8)

subscripts denoting partial derivatives. It is found that in all cases considered, the source term,
linked to the beating power expended by the Pleurobrachia to move through water, is completely
balanced by the action of viscosity.

Parametric study and discussion

The propulsive performances (power output and thrust) of ctenophores with different beating pat-
terns are studied, the frequency varying from 5 Hz to 25 Hz and the number of cilia varying from
9 to 25. The parametric study is performed in the case of the Pleurobrachia’s beating patterns
observed in nature [22] (case A) and a fixed pattern (case B) corresponding to that displayed in
figure 2b. Such a pattern is that which has been recorded for the case n = 12 and f = 15 Hz, and
has been imposed artificially also for the other parametric combinations. Although this choice
is arbitrary, it appeared to us as a reasonable way to compare propulsive effects between natural
and forced cases. In Table 1 the performances per cilium are reported. Beating patterns observed
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in nature (frequency and wavelength) are indicated in bold characters in the table, all other com-
binations are artificial. The celerity of the metachronal wave produced under natural conditions
increases monotonically from low to high frequency (its value is 62.5 mm/s when f = 5 Hz and it
raises to 112.5 mm/s at f = 25 Hz). As expected very large values of the longitudinal thrust are
found for the case of long waves and high beating frequencies. Such conditions are however very
demanding on the side of the animal, since the power expended is very large, both in natural and
artificial conditions. They could only be produced in very short bursts, if at all. The ratio of thrust
to power is not maximized by the effective beating parameters of the Pleurobrachia, indicating
that such a simple functional is not sufficient to capture all the features involved in propulsion of
ctenophores.

Power output (nW/cilium) Longitudinal thrust (nN/cilium)

Case A

n = 9 n = 12 n = 25
f=5Hz 15.4 4.0 32.0
f=15Hz 272.9 141.3 2350.5
f=25Hz 1466.9 634.6 2283.8

n = 9 n = 12 n = 25
f=5Hz 13.1 5.4 21.5
f=15Hz 63.1 77.1 322.2
f=25Hz 120.1 179.7 388.9

Case B

n = 9 n = 12 n = 25
f=5Hz 12.4 4.0 6.3
f=15Hz 212.2 141.3 491.3
f=25Hz 1479.2 634.6 489.2

n=9 n=12 n=25
f=5Hz 11.5 5.4 7.6
f=15Hz 69.1 77.1 120
f=25Hz 270 179.7 148.9

Table 1. Comparative influence of beating parameters on the performances (power output and
thrust) for the natural Pleurobrachia pattern (case A) and a specific pattern imposed (case B).

The results found here are also compared to those obtained experimentally by Barlow & Sleigh [22],
although the latter authors approximate power output in a very crude manner. The observed trend
is in good agreement, despite the fact that row data differ by up to two decades (cf. figure 9). The
over-estimation of the power output in our case is mainly due to the type of simulations carried
out. Indeed, the results of this study are two-dimensional and a more realistic three-dimensional
simulation would allow fluid to escape from the sides, whereas in our case the fluid can only be
ejected via the top surface. This leads to an overestimation of the blowing effect associated to
propulsion which partially accounts for the difference between theory and measurements.

Figure 9. Comparison of power outputs per comb plate as function of the beating frequency.

4. Concluding remarks
The numerical procedure developed here using a coupling software (PALM) and an appropriate
immersed boundary procedure is efficient and capable to model the influence of a flexible beating
structure on the near-wall surrounding fluid. The specific application considered here focusses on
the propulsive characteristics of a small ctenophore: it is shown that long waves oscillating at high
frequencies could yield very large thrust (a mechanism possibly exploited by the Pleurobrachia
when in need of short bursts), and that the power output per comb plate increases with frequency
as f2.2 during swim at natural conditions, in rough agreement with laboratory data. Also, it is
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noted that during its normal swimming phases, the animal does not simply maximize the ratio of
longitudinal thrust to power expended. Perspectives concern three-dimensional simulations and
the complete interaction between freely beating comb plates and the fluid.
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