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This talk will present a promising new strategy for the estimation and forecasting of chaotic nonlinear
systems characterized by the related challenges of multiscale complexity and model uncertainty.

The phrasemodel-based estimationis often associated almost synonomously with the ubiquitousKalman
filter, which is in a certain sense optimal in the low-dimensional linear/quadratic/Gaussian (LQG) setting.
The key principle upon which the Kalman filter is based is that, in a linear system,Gaussian initial uncer-
tainty of the state estimate and Gaussian disturbances and measurement noise result in Gaussian uncertainty
of later optimal state estimates. This important principle allows the Kalman filter to summarize all past sys-
tem measurements with a single state estimate (of dimensionN) and covariance estimate (of dimensionN2),
the former representing the best estimate of the present system state based on all past measurements, and
the later parameterizing completely the uncertainty of this estimate.

When the system of interest is an accurate (that is, high-dimensional, often withN & 106) discretization
of a multiscale infinite-dimensional system governed by a partial differential equation (PDE), the matrices at
the heart of the Kalman filter approach are computationally intractable. The common remedy applied in this
case is to follow an iterative vector-based approach based on repeated adjoint analysis of candidate system
trajectories; when framed appropriately, this approach solves iteratively the same problem that the Kalman
filter solves in a single shot, but with increased computational requirements (for complete convergence,
which is often not required) and reduced storage requirements [O(N) instead ofO(N2)]. This iterative
approach is referred to by the weather forecasting community as4Dvar, and by the controls community as
moving-horizon estimation(MHE). A hybrid approach which approximates the covariance matrices at the
heart of the Kalman approach via the sum of the outer product of vectors is also available; this approach is
referred to as areduced-rank Kalman filter.

When the system of interest is not linear, a common “fix” is to linearize the system model (either about
a specified trajectory of the system, or a representative mean state), to design a Kalman filter, then to throw
the system nonlinearity back onto the estimator model at theeleventh hour, an algorithm referred to as the
extended Kalman filter. Though the key principle mentioned above, upon which the Kalman filter (and
related approaches) is based, is in fact true for infinitesimal uncertainties in smooth nonlinear systems,this
principle fails spectacularly in chaotic nonlinear systems for finite, yet still relatively small, disturbances
typical in such systems(see Figure 1). As anyone who has experienced the consequences of a bad weather
forecast will readily attest, the perturbation of the stateestimate from the actual system state is often not
infinitesimal in the problem of weather forecasting. Indeed, problems of this class are so difficult just in the
modeling and measuring of the system that perturbations of the state estimate from the actual system state
are essentially guaranteed to be larger than anyone involved in the forecasting process would care to admit.
The question addressed well by our new algorithm is how to deal with such finite perturbations, and the
associated non-Gaussian distribution of uncertainty of the estimate, in a tractable manner.

Note that, in chaotic systems, the system trajectory moves on attractor in phase space, with the effects
of the nonlinear terms non-negligible and in an averaged sense in some sort of balance with the effects of the
linear terms in order to maintain the unsteady motion on the attractor. As the chaotic system moves on this
attractor, theLyapunov exponentmeasuring the time-averaged exponential rate of divergence of infinitesi-
mally perturbed trajectories is positive, and thelocal Lyapunov exponentmeasuring the local exponential
rate of divergence of infinitesimally perturbed trajectories is sometimes both positive and large. It is these
“trouble spots” on the attractor that cause the most difficulties to existing state estimation algorithms.

The method that we propose in this talk (summarized briefly inFigure 2, Algorithm D) is unique from
the standpoint that itrevisits past measurements in light of new data in an adjustable manner based on a
quantitative measure of the quality of the current state estimate. For more information, a GUI is available
on the web implementing this method athttp://renaissance.ucsd.edu/retro.
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Figure 1: Demonstration of the nominal trajectory of the state estimate (left, black), and several perturbed
trajectories of the state estimate (right, red) initiated at a point in the Lorenz system characterized by a large
local Lyapunov exponent. In this test, the initial perturbations of the perturbed trajectories are very small (to
plotting accuracy, they are on top of each other), and distributed in a Gaussian fashion. The final distribution
of the perturbed trajectories, however, is highly non-Gaussian.

Figure 2: The basic 4Dvar algorithm for weather forecasting(center) and, after applying the three ap-
parently minor but critical improvements discussed in thistalk, the proposed multiscale receding-horizon
model-predictive estimation approach (right). In the cartoon on the left, the blue curve corresponds to the
underlying “truth” model, the black×’s depict the noisy measurements ofx2, the yellow interval depicts
the current optimization window, the red curve indicates the state estimate over this window, marched from
t = −T to t = 0 in step 1, the green cvurve indicates the adjoint marched the opposite direction over this
window, from t = 0 to t = −T in step 2, and the magenta curves indicate the state estimatefor three trial
values ofαi in step three. Note that time evolves as these computations are performed, as indicated by the
gradual shifting of the yellow window to the left from the time marked as “present” as these computationally-
intensive steps of the optimization proceed.
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