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This talk will present a promising new strategy for the estion and forecasting of chaotic nonlinear
systems characterized by the related challenges of maliisomplexity and model uncertainty.

The phrasenodel-based estimatios often associated almost synonomously with the ubigai@iman
filter, which is in a certain sense optimal in the low-dimensioire@dr/quadratic/Gaussian (LQG) setting.
The key principle upon which the Kalman filter is based is,tirat linear systemGaussian initial uncer-
tainty of the state estimate and Gaussian disturbances @a$urement noise result in Gaussian uncertainty
of later optimal state estimate¥his important principle allows the Kalman filter to sumimarall past sys-
tem measurements with a single state estimate (of dimeh§iand covariance estimate (of dimensigf),
the former representing the best estimate of the presetégmnsystate based on all past measurements, and
the later parameterizing completely the uncertainty of dstimate.

When the system of interest is an accurate (that is, highedional, often wittN > 10°) discretization
of a multiscale infinite-dimensional system governed byréglaifferential equation (PDE), the matrices at
the heart of the Kalman filter approach are computationatiactable. The common remedy applied in this
case is to follow an iterative vector-based approach basedpeated adjoint analysis of candidate system
trajectories; when framed appropriately, this approadvesdteratively the same problem that the Kalman
filter solves in a single shot, but with increased computaiaequirements (for complete convergence,
which is often not required) and reduced storage requiresni@{N) instead ofO(N?)]. This iterative
approach is referred to by the weather forecasting commasi@Dvar, and by the controls community as
moving-horizon estimatio(MHE). A hybrid approach which approximates the covariance ioesrat the
heart of the Kalman approach via the sum of the outer produgtaiors is also available; this approach is
referred to as aduced-rank Kalman filter

When the system of interest is not linear, a common “fix” isiteéarize the system model (either about
a specified trajectory of the system, or a representativenrsiade), to design a Kalman filter, then to throw
the system nonlinearity back onto the estimator model aelenth hour, an algorithm referred to as the
extended Kalman filter Though the key principle mentioned above, upon which thémiga filter (and
related approaches) is based, is in fact true for infinitabumcertainties in smooth nonlinear systethss
principle fails spectacularly in chaotic nonlinear systefor finite, yet still relatively small, disturbances
typical in such systemsee Figure 1). As anyone who has experienced the consexgueha bad weather
forecast will readily attest, the perturbation of the siedémate from the actual system state is often not
infinitesimal in the problem of weather forecasting. Indga@blems of this class are so difficult just in the
modeling and measuring of the system that perturbationseo$tate estimate from the actual system state
are essentially guaranteed to be larger than anyone invifvilhe forecasting process would care to admit.
The question addressed well by our new algorithm is how td wéh such finite perturbations, and the
associated non-Gaussian distribution of uncertainty @fttimate, in a tractable manner.

Note that, in chaotic systems, the system trajectory momegtoactor in phase space, with the effects
of the nonlinear terms non-negligible and in an averagedesensome sort of balance with the effects of the
linear terms in order to maintain the unsteady motion on tlracior. As the chaotic system moves on this
attractor, theLyapunov exponemteasuring the time-averaged exponential rate of divegyehnfinitesi-
mally perturbed trajectories is positive, and theal Lyapunov exponemheasuring the local exponential
rate of divergence of infinitesimally perturbed trajeatsris sometimes both positive and large. It is these
“trouble spots” on the attractor that cause the most diffiesilto existing state estimation algorithms.

The method that we propose in this talk (summarized brieflyigure 2, Algorithm D) is unique from
the standpoint that revisits past measurements in light of new data in an adpistananner based on a
guantitative measure of the quality of the current statéveste For more information, a GUI is available
on the web implementing this methodhat p: // r enai ssance. ucsd. edu/ retro.
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Figure 1. Demonstration of the nominal trajectory of thaeststimate (left, black), and several perturbed
trajectories of the state estimate (right, red) initiated point in the Lorenz system characterized by a large
local Lyapunov exponent. In this test, the initial pertuitas of the perturbed trajectories are very small (to
plotting accuracy, they are on top of each other), and digied in a Gaussian fashion. The final distribution

of the perturbed trajectories, however, is highly non-Gears
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Figure 2. The basic 4Dvar algorithm for weather forecastiognter) and, after applying the three ap-
parently minor but critical improvements discussed in talg, the proposed multiscale receding-horizon
model-predictive estimation approach (right). In the @amnt on the left, the blue curve corresponds to the
underlying “truth” model, the black’s depict the noisy measurementsaf the yellow interval depicts
the current optimization window, the red curve indicatesdtate estimate over this window, marched from
t=-Ttot=0in step 1, the green cvurve indicates the adjoint marcheaiposite direction over this
window, fromt =0tot = —T in step 2, and the magenta curves indicate the state estiorateree trial
values ofa' in step three. Note that time evolves as these computatiengeaformed, as indicated by the
gradual shifting of the yellow window to the left from the rmarked as “present” as these computationally-
intensive steps of the optimization proceed.



