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Abstract

The objective of this work is to determine Reduced-Order Models based on Proper Or-
thogonal Decomposition (POD ROM) that can reproduce with a sufficient degree of reliabil-
ity the spatio-temporal dynamics of separated flows. The growing interest for these models
comes from their potential use as surrogate models in the resolution of large scale constrained
optimization problems encountered in flow control. The general approach consists in substi-
tuting the high-fidelity model of Navier-Stokes equations by an approximate model, cheaper
to compute and capturing the essential features of the original dynamics. POD, which is the
optimal decomposition in terms of energy, can be used to describe the flow in a low dimen-
sional subspace spanned by a few number of dominant modes. However, it can happen that
the traditional POD-Galerkin approach leads to a POD ROM insufficiently accurate and even
sometimes unstable. To improve the behavior of the POD ROM, various calibration methods
are developed in this communication. Essentially, the ideaof the calibration methods is to
determine in the equations of the POD ROM auxiliary parameters that are computed by re-
solving appropriate constrained minimization problems. Finally, the calibration methods are
assessed for two flow configurations of different complexity.
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1. Introduction

Many attempts were already performed in order to suppress orto delay the boundary layer separa-
tion. A key enabler is the development of control procedureswhich are energetically efficient. To
determine optimal control laws and thus to contribute to improve the current actuation systems,
a method consists in formulating this flow control problem like a constrained optimization prob-
lem [8]. In practice, this problem of optimization is based on the minimization of an objective
functional representative of separation (a functional of vorticity, for example). The objective of
the optimal control theory is to determine control parameters (unsteady blowing/suction veloc-
ities) which minimize this cost functional under the constraints of the Navier-Stokes equations.
The major difficulty comes from the iterative procedure of resolution generally used to solve this
optimization problem which generates huge numerical costswhen the Navier-Stokes equations
are used as state equations. To circumvent this difficulty, reduced-order modeling is a powerful
concept which allows a representation of the dynamics of large-scale systems by a small number
of degrees of freedom (see Fig. 1), reducing considerably the numerical requirements associated
to the optimal control approach.

Starting from a set of discretized state solutions, the ideaof reduced-order modeling is to compress
the information contained in the database in such a way to retain the essential features of the flow.
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Figure 1. Schematic representation of the POD reduced-order modeling approach.

Using the Proper Orthogonal Decomposition (POD) [10, for example], it is possible to extract a
set of modes characteristic of the database which constitute by construction the optimal basis for
the energetic description of the flow. A Galerkin projectionof the Navier-Stokes equations onto a
finite number of POD modes yields a set of ordinary differential equations in time. The resolution
of this POD Reduced-Order Model (POD ROM) provides a prediction of the temporal dynamics
of the flow on the POD subspace. This model can then be used as surrogate model of the Navier-
Stokes equations in an optimal control procedure. This approach was recently considered in [2]
to control the wake flow of a circular cylinder in the supercritical regime.

With the aim of using these reduced-order models as surrogate models of Navier-Stokes equations,
these POD ROM must be sufficiently accurate to reproduce the dynamics of the high-fidelity
model. However, it is generally not the case for the POD ROM obtained directly by the traditional
POD Galerkin approach. The main reasons are the truncation made in the POD subspace for the
Galerkin projection, the intrinsic numerical instabilities of the model and the contribution of the
pressure term which often should be modelled because the pressure is generally not accessible
in the case of experimental data. To correct these approximation errors, calibration methods can
be developed [4, 6]. Essentially, the aim of these calibration methods is to determine auxiliary
parameters in the equations of the low-order model.

The general methodology of construction of a calibrated PODROM is initially exposed in the
case of a generic configuration of separated flow: the wake flowof a circular cylinder atRe = 200
(DNS code Icare, IMFT). Then, this approach is assessed for amassively separated flow around
a NACA012 airfoil atRe = 5000 (DNS code Fluent). Thereafter, these two configurations are
respectively calledDNS-cylinderandDNS-airfoil.

2. POD-Galerkin modeling

Let
{

u(x, tk)
}

k=1,...,Nt
be a set ofNt snapshots generated by DNS or PIV (velocity, pressure,

temperature fields, . . . ) wherex ∈ Ω the physical space. Using the "method of snapshots"
introduced by Sirovich [10], any snapshot can be expanded interms of spatial POD eigenfunctions
Φi(x) and temporal POD eigenfunctionsai(t):

u(x, t) = um(x) +

Nt
∑

i=1

ai(t)Φi(x), (1)

whereum(x) is the mean velocity estimated as an ensemble average of the flow realizations con-
tained in the snapshot set. The energetic optimality of the POD basis suggests that only a very
small number of POD modesNgal ≪ Nt may be necessary to describe efficiently any flow real-
izations of the input data.

The weak form of the Navier-Stokes equations is then restricted to the POD subspaceENgal
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spanned by the firstNgal spatial eigenfunctionsΦi. The Galerkin projection yields:
(

∂u

∂t
+ (u.~∇)u,Φi

)

Ω

=

(

−~∇p +
1

Re

∆u,Φi

)

Ω

, (2)

where(., .)
Ω

is the classicalL2 inner product onΩ.

Finally, inserting the expansion (1) into the Galerkin projection (2), we obtain after some algebraic
manipulations the following set of ODEs:











ȧi(t)=Ci + Lijaj(t) + Qijkaj(t)ak(t) +
(

−~∇p,Φi

)

Ω
,

ai(0)=

(

u(x, 0) − um(x),Φi(x)

)

Ω

,
(3)

where the Einstein summation convention is used and all the subscripts run from1 to Ngal.

The coefficientsCi, Lij andQijk depend explicitly onΦi andum. In the classical POD-Galerkin
approach, these coefficients are first calculated once and for all at the beginning of the procedure.
Then, the set of equations (3) is integrated in time with a fourth-order Runge-Kutta scheme yield-
ing a set of predicted time histories for the mode amplitudesai, which can be compared with the
POD temporal eigenfunctionsaex

i (tk) = (u(x, tk) − um(x),Φi(x))
Ω

for k = 1, · · · , Nt. For an

incompressible flow, the pressure term writes
(

−~∇p,Φi

)

Ω
= −

∫

Γ
pΦi · n dx wheren is the

outward unit normal at the boundary surfaceΓ. Here, we follow what is made in the majority of
this type of studies [2, 6] and neglect at first approximationthe contribution of the pressure term.

The dimensionNgal is determined in such a way that the major part of the flow energy is captured
in the model. Figure 2 represents the relative energy contained in each POD mode for the cylinder
configuration. This figure shows that for this flow configuration, the energy is concentrated in a
very small number of modes: six POD modes are here sufficient to represent99.9% of the flow
energy. Thereafter, we thus considerNgal = 6 for theDNS-cylinderconfiguration.
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Figure 2. Relative energy content of the POD eigenvalue spectrum fortheDNS-cylinderconfigu-
ration.λi denotes the eigenvalue associated to the POD modei.

When the POD ROM (3) is integrated in time under these conditions, the original flow dynamics
is found globally but the precision is not perfect. As that isshown in figure 3, the most energetic
mode is well reconstructed but for the higher modes, the maxima are over-estimated. This behavior
is mainly due to the lack of dissipation generated by the truncation involved in the POD Galerkin
approach. Indeed, the higher POD modes which correspond to the dissipative scales of the flow are
not taken into account explicitly in the model. It is thus necessary to model their action, similarly
as what is generally done in Large Eddy Simulation.
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Figure 3. Comparison of the predicted (red lines) and reference (black symbols) mode amplitudes
for theDNS-cylinderconfiguration. No calibration was used.

In the aim of improving the POD ROM predictive accuracy, various calibration methods are in-
troduced in the following section where they are tested on the DNS-cylinderconfiguration. An
application is then performed in section 4 on theDNS-airfoil configuration.

3. Calibration methods

Essentially, the idea of the calibration methods is to introduce into the POD ROM equations aux-
iliary parameters that are determined so that the amplitudecoefficientsai(t), computed by solv-
ing (3), are as close as possible to the corresponding reference amplitudesaex

i (t). A strategy
consists in taking as a starting point the general philosophy of data assimilation methods [9]. We
try to improve our knowledge of the system by combining as well as possible the observations of
the system states (in our case the exact POD modes), and the form of the dynamical model (here
obtained by the Galerkin projection). Consequently, thesecalibration terms can be estimated by
considering two conditions of increasing level of constraint:

1. the form of the calibrated POD ROM equations has to fit the observations,

2. the temporal dynamics predicted by the calibrated POD ROMhas to fit the observations.

3.1. COMPUTING CALIBRATION TERMS

Following the analogy with Large Eddy Simulation in turbulence modeling, the calibration terms
can be eddy-viscosities functions of the POD mode and eventually of time [1]. Another possibility
is to add constant or/and linear terms to the set of equations[7, 3]. The number of free parameters
in the calibrated system depends on the specific approach followed in the calibration procedure.
In this study, the following calibration procedures are tested:

Cal. 1: linear termsGij : ȧi(t) = Ci + (Lij + Gij)aj(t) + Qijkaj(t)ak(t).

Cal. 2: constant termsFi and linear termsGij : ȧi(t) = (Ci+Fi)+(Lij+Gij)aj(t)+Qijkaj(t)ak(t).

Cal. 3: eddy-viscositiesαi independent of time:̇ai(t) = C′
i + L′

ijaj(t) + Qijkaj(t)ak(t) where
C′

i andL′
ij are deduced fromCi andLij by adding an optimal correction factor1 + αi to

the term1/Re.

3.2. CALIBRATION USING LEAST SQUARES PROCEDURE

To simplify the future description of the various calibration methods, letCij be the generic un-
known calibration coefficients introduced in the previous section. Moreover, let us definêai(t) the
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Figure 4. Comparison of the predicted (red lines) and reference (black symbols) mode amplitudes
for theDNS-cylinderconfiguration. The reduced-order model obtained by Galerkin projection for
Ngal = 6 was calibrated by addition of constant and linear terms.

continuous spline function that interpolates the set of points{(tk, aex
i (tk))}k=1,··· ,Nt

. The calibra-
tion coefficientsCij can be found as the solutions minimizing the following quadratic functional:

J (ȧi, Cij) =

Ngal
∑

i=1

Nt
∑

s=1

[ȧi(ts) − ˙̂ai(ts)]
2,

where the analytic expression ofȧi(t) is given by (3) anḋ̂ai(t) is estimated by numerically evalu-
ating the time derivative of the reference spline.

The minimum ofJ is found when the partial derivatives∂J /∂Cij vanishe. This least squares
problem gives rise analytically to a linear system that can be solved easily and rapidly to determine
Cij. Indeed, the CPU time needed to compute the calibration terms is less than0.5 second for the
various calibration procedures considered. With this fastcalibration procedure, we now obtain
for the DNS-cylinderconfiguration an accurate POD ROM. This result is clearly highlighted on
figure 4 where a calibrated model with constant and linear terms was used. The maxima over-
estimations which occur when the POD ROM is not calibrated are corrected. The prediction is
now correct and even for high-order POD modes.

3.3. COMPARISON OF DIFFERENT CALIBRATION PROCEDURES

In order to compare quantitatively the various calibrationprocedures introduced in section 3.1, we
introduceEi, the temporal reconstruction error associated to the POD modei, defined as:

Ei =
1

Nt

√

√

√

√

Nt
∑

s=1

(ai(ts) − âi(ts))
2.

Figure 5 presents, for theDNS-cylinderconfiguration, the errorsEi obtained using the three cal-
ibration methods. Except for the first POD mode (see figure 5(a)) where the error is minimal
when the POD ROM is calibrated by using a constant term, for the other POD modes the error
is minimal when constant and linear terms are used for the calibration (for instance, figure 5(b)
represents the error associated to mode6). By adding the errors obtained for all POD modes, it
appears that the calibration using constant and linear terms is the most efficient. In addition, for
this flow configuration, the calibration using eddy viscosities constant in time provides a worse
approximation than the other calibration procedures.

The differences between these calibration procedures can be explained by looking at the role
played by the calibration coefficients on the model. In practice, theith constant term of calibration
only alters the correspondingith POD mode dynamics, whereas the linear terms of calibration
allow to exploit the interactions between modesi andj. Indeed, as one can note on figure 6, the
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Figure 5. Comparison for theDNS-cylinderconfiguration of the temporal reconstruction errorEi

obtained for various kinds of calibration terms. Calibration is performed using the least squares
procedure.

contributions of the linear calibration terms are greater for the off-diagonal terms, and it is all the
more true for the higher POD modes. However, it is also noted that the interactions between modes
are rather local. It seems that the corrections terms only alter the POD modes corresponding to the
same scales. By nature, the calibration procedures based onthe modification of eddy viscosities
do not bring any possibility of interaction between POD modes. In that, their impact are similar to
the calibration methods consisting in modifying the constant terms, even if in practice the constant
and linear terms are corrected at the same time. To make this type of calibration more effective,
it is interesting to consider time-dependent eddy viscosities [1]. The best relative efficiency of the
calibration procedures based on the constant and linear terms seems to be explained by its impact
on the whole model. Consequently, thereafter, the results concerning the calibration methods will
be based on the determination of the constant and linear terms.
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Figure 6. Graphical representation of the linear calibration term obtained for theDNS-cylinder
configuration.

3.4. CONSTRAINED OPTIMIZATION PROCEDURE

Although the least squares procedure gives very good results in the case of theDNS-cylindercon-
figuration, this approach only corresponds to the first condition stated at the beginning of section
3. A natural improvement of the previous approach consists in seeking the calibration terms as the
solutions of a constrained optimization problem [8]. Indeed, one can consider that the calibration
procedure is equivalent to determinecontrol parameters(here, the constant and linear termsFi

andGij) which minimize thecost functionalJ (here, a measure of the difference betweenai(t)
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obtained by the calibrated POD ROM andâi(t) the coefficients of reference) given by:

J (ai, Fi, Gij) =

Ngal
∑

i=1

Nt
∑

s=1

[ai(ts) − âi(ts)]
2 ,

under the constraints of thestate equations(here, the calibrated POD ROM):

ȧi(t) = (Ai + Fi) + (Bij + Gij)aj(t) + Cijkaj(t)ak(t). (4)

This constrained optimization problem is solved using the Lagrange multiplier method as de-
scribed in [8]. The constraints are enforced by introducingthe Lagrange multipliers or adjoint
variablesξk, and the Lagrangian functionalL:

L(ai, Fi, Gij , ξk) = J (ai, Fi, Gij) −

Ngal
∑

k=1

Nt
∑

s=1

ξk(ts)Nk(ai, Fi, Gij),

where the expressionNk(ai, Fi, Gij) = 0 corresponds to the constraints (4).

Considering that each argument ofL is independent of the others, the optimality system is deter-
mined by setting the first variation ofL with respect to the adjoint variablesξk, the state variables
ai, and to the calibration termsFi andGij to be equal to zero.

Setting the first variation ofL with respect to the Lagrange multiplierξk equal to zero, we recover
thestate equationNk(ai, Fi, Gij) = 0. When we set to zero the first variation ofL with respect to
the state variableai, theadjoint equationsare derived. Finally, setting the first variation ofL with
respect to the control parametersFi andGij equal to zero yields theoptimality conditions. These
equations are only equal to zero at the minimum of the objective function.

The optimality systemformed by the state equations, the adjoint equations and theoptimality
equations represents the first order Karush-Kuhn-Tucker optimality conditions for the constrained
optimization problem. This system of coupled ordinary differential equations is generally solved
using an iterative method [see 1, for example] because the state equations associated to the opti-
mization problem often correspond to a large-scale system (thousands or even million of degrees
of freedom are frequently encountered in engineering computations). Here, it is possible to solve
this system of coupled equations using a "one-shot" method because the state equations are formed
by a low-order dynamical model with a very small number of modes. In this communication, we
use the pseudo-spectral procedure recently suggested by [6]. The reader is referred to this article
for a detailed description of the numerical procedure. The results obtained by the least squares
approach can naturally be used to initialize the unknown control parameters and thus increase the
speed of convergence of this procedure.

Figure 7 compares, for theDNS-cylinderconfiguration, the temporal reconstruction errorEi rel-
ative to the least squares calibration method to the one obtained with a constrained optimization
method. For this benchmark configuration, the use of a more sophisticated optimization procedure
improves the results obtained by the least squares approach, more particularly for the first POD
modesi.e. the most energetic ones.

Finally, from a numerical point of view, the most efficient POD ROM calibration method, corre-
sponds to the resolution of a constrained optimization problem. In addition to this aspect of pure
numerical performance, this approach is also more satisfactory mathematically because it takes
into account in a more complete way the constraints that the calibrated POD ROM must check.
The next section thus applies this method to compute constant and linear calibration terms for the
DNS-airfoil configuration.
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Figure 7. Comparison for theDNS-cylinderconfiguration of the temporal reconstruction errorEi

obtained for various calibration methods.

4. Application to a massively separated flow around a NACA012airfoil

In this section, we consider an incompressible two-dimensional vortex-shedding flow around a
NACA012 airfoil, for a Reynolds numberRe = 5000 and an angle of attackα = 17o. The
database was computed with the commercial code Fluent and isonly composed of velocity snap-
shots. Figure 8(a) represents a typical snapshot containedin the database. The flow dynamics
includes a vortex shedding at the leading edge, a massive separation on the upper-side of the air-
foil, and a large wake downstream the trailing edge. As it canbe inferred from Fig. 8(b), the energy
of the flow is concentrated on the first POD modes, in a way similar to the first configuration.

(a) Iso-values of the longitudinal veloc-
ity.
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Figure 8. One typical snapshot and relative energy content of the PODeigenvalue spectrum for
theDNS-airfoil configuration.

The first 6 modes POD of theDNS-airfoil configuration are shown in Fig. 9. The spatial organi-
zation is close to that encountered classically in the literature for theDNS-cylinderconfiguration.
Indeed, the POD modes are associated in pairs of same energy,which is characteristic of the strong
periodic behavior of the Von Kármán vortex shedding in the wake of a cylinder. In the case of the
DNS-airfoil configuration, the vortex shedding in the wake of the airfoilis also captured by POD,
which allows a more efficient extraction of the dynamics of the coherent structures.

Following the same methodology as previously, a 8-modes POD-Galerkin system which also con-
tains 99.9% of the flow energy is computed. The dynamics predicted by the POD ROM without
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(a) mode 1. (b) mode 2. (c) mode 3.

(d) mode 4. (e) mode 5. (f) mode 6.

Figure 9. Iso-values ofΦu
i longitudinal component of the spatial POD eigenfunctionsΦi for the

DNS-airfoil configuration.

calibration is shown in Fig. 10(a). It appears that the temporal dynamics of the system is more
unstable than in the case of theDNS-cylinderconfiguration. The maxima over-estimations are
much more important than in the case of theDNS-cylinderconfiguration, in particular for higher
POD modes where the model tends to diverge at long times.

At the opposite, the calibrated model using constant and linear terms computed as solutions of a
constrained optimization problem presents a very good prediction of the system dynamics, even
for the POD modes of high index. The over-estimates are corrected and we then succeed to have
an accurate representation of the original dynamics.

5. Conclusion

For the two flow configurations tested in this study, accuratePOD reduced-order models could be
developed by using appropriate calibration procedures. The most efficient method appears to be
the determination of constant and linear terms as solutionsof a constrained optimization problem.
In addition, in order to improve the speed of convergence of this procedure of optimization, let us
mention that it is possible to use the control parameters obtained by the least squares method as
initial values.

An immediate prospect of this work consists in solving a flow control problem via an optimal
control approach by using a calibrated POD reduced-order model as state equations instead of
Navier-Stokes equations. As the POD ROM generally depends on the design parameters used to
derive it, it will be certainly necessary to use an adaptive technique of optimization in which the
POD model is recomputed when the control parameters leave a zone called trust-region in which
one estimates that the model is still representative of the controlled dynamics. Currently, the most
suitable method is the TRPOD algorithm recently proposed in[5]. This approach should allow in
a near future to tackle realistic flow control problems.
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