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Abstract

The objective of this work is to determine Reduced-Order klsdbased on Proper Or-
thogonal Decomposition (POD ROM) that can reproduce withficgent degree of reliabil-
ity the spatio-temporal dynamics of separated flows. Theviopg interest for these models
comes from their potential use as surrogate models in tlodutéen of large scale constrained
optimization problems encountered in flow control. The gahapproach consists in substi-
tuting the high-fidelity model of Navier-Stokes equatioysam approximate model, cheaper
to compute and capturing the essential features of thenaligiynamics. POD, which is the
optimal decomposition in terms of energy, can be used toritesthe flow in a low dimen-
sional subspace spanned by a few number of dominant modegevdq it can happen that
the traditional POD-Galerkin approach leads to a POD ROMffitgently accurate and even
sometimes unstable. To improve the behavior of the POD R@kous calibration methods
are developed in this communication. Essentially, the wfethe calibration methods is to
determine in the equations of the POD ROM auxiliary paramsdteat are computed by re-
solving appropriate constrained minimization problemgaly, the calibration methods are
assessed for two flow configurations of different complexity
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1. Introduction

Many attempts were already performed in order to suppressdmlay the boundary layer separa-
tion. A key enabler is the development of control procedwkgh are energetically efficient. To
determine optimal control laws and thus to contribute torimap the current actuation systems,
a method consists in formulating this flow control problekela constrained optimization prob-
lem [8]. In practice, this problem of optimization is basadthe minimization of an objective
functional representative of separation (a functional aticity, for example). The objective of
the optimal control theory is to determine control paramsetensteady blowing/suction veloc-
ities) which minimize this cost functional under the coastts of the Navier-Stokes equations.
The major difficulty comes from the iterative procedure alation generally used to solve this
optimization problem which generates huge numerical catisn the Navier-Stokes equations
are used as state equations. To circumvent this difficigtyuced-order modeling is a powerful
concept which allows a representation of the dynamics gklacale systems by a small number
of degrees of freedom (see Fig. 1), reducing consideral@yntimerical requirements associated
to the optimal control approach.

Starting from a set of discretized state solutions, the adeaduced-order modeling is to compress
the information contained in the database in such a way &irréte essential features of the flow.
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Figure 1L Schematic representation of the POD reduced-order nmadapproach.

Using the Proper Orthogonal Decomposition (POD) [10, fareple], it is possible to extract a
set of modes characteristic of the database which corsstityitonstruction the optimal basis for
the energetic description of the flow. A Galerkin projectairthe Navier-Stokes equations onto a
finite number of POD modes yields a set of ordinary differ@raguations in time. The resolution
of this POD Reduced-Order Model (POD ROM) provides a prexhcof the temporal dynamics
of the flow on the POD subspace. This model can then be usedragate model of the Navier-
Stokes equations in an optimal control procedure. Thiscaambr was recently considered in [2]
to control the wake flow of a circular cylinder in the supeical regime.

With the aim of using these reduced-order models as sugagatiels of Navier-Stokes equations,
these POD ROM must be sufficiently accurate to reproduce yhardics of the high-fidelity
model. However, it is generally not the case for the POD ROMiokd directly by the traditional
POD Galerkin approach. The main reasons are the truncatimte iim the POD subspace for the
Galerkin projection, the intrinsic numerical instabési of the model and the contribution of the
pressure term which often should be modelled because tlsyeeis generally not accessible
in the case of experimental data. To correct these approximarrors, calibration methods can
be developed [4, 6]. Essentially, the aim of these calibrathethods is to determine auxiliary
parameters in the equations of the low-order model.

The general methodology of construction of a calibrated FRIIM is initially exposed in the
case of a generic configuration of separated flow: the wakedf@xcircular cylinder az, = 200
(DNS code Icare, IMFT). Then, this approach is assessed lfioassively separated flow around

a NACAO012 airfoil atR. = 5000 (DNS code Fluent). Thereafter, these two configurations are
respectively calledNS-cylinderandDNS-airfoil.

2. POD-Galerkin modeling

Let {u X, tg }k be a set ofV; snapshots generated by DNS or PIV (velocity, pressure,
temperature flelds . .) where € ) the physical space. Using the "method of snapshots”
introduced by Sirovich [10], any snapshot can be expandestins of spatial POD eigenfunctions
®,(x) and temporal POD eigenfunctiong(t):

N

u(x, 1) = wn(x) + ) a;(t)®;(x), 1)

i=1

whereu,, (x) is the mean velocity estimated as an ensemble average obthecflizations con-
tained in the snapshot set. The energetic optimality of {B® Basis suggests that only a very
small number of POD modes,,; < N; may be necessary to describe efficiently any flow real-
izations of the input data.

The weak form of the Navier-Stokes equations is then resttito the POD subspacgy,,,
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spanned by the firsV,,; spatial eigenfunction®;. The Galerkin projection yields:

<a_u + (u.V)u, qn> 1

— <—ﬁp+ ReAu, <I>i> , 2)

Q Q

where(., ) is the classical’? inner product onf2.

Finally, inserting the expansion (1) into the Galerkin patjon (2), we obtain after some algebraic
manipulations the following set of ODESs:

a;(t)=C; + Lija;(t) + Qijra;(t)ar(t) + (—ﬁp, ‘I’i)Q ;
a;(0)= (u(x, 0) — up(x), <I>Z-(x)> ,

Q
where the Einstein summation convention is used and alluthscsipts run fromi to N.

®3)

The coefficient;, L;; andQ;;;, depend explicitly on®; andu,,. In the classical POD-Galerkin
approach, these coefficients are first calculated once arall fat the beginning of the procedure.
Then, the set of equations (3) is integrated in time with atfeorder Runge-Kutta scheme vyield-
ing a set of predicted time histories for the mode amplitugesvhich can be compared with the
POD temporal eigenfunctiong™(tx) = (u(x, tx) — wn(x), ®;(x)), fork =1,--- , N;. For an
incompressible flow, the pressure term Wri(esﬁp, @i)ﬂ = — fr p ®; - ndx wheren is the

outward unit normal at the boundary surfdceHere, we follow what is made in the majority of
this type of studies [2, 6] and neglect at first approximattoe contribution of the pressure term.

The dimensionV,,; is determined in such a way that the major part of the flow gnisrgaptured

in the model. Figure 2 represents the relative energy awedlein each POD mode for the cylinder
configuration. This figure shows that for this flow configuvati the energy is concentrated in a
very small number of modes: six POD modes are here sufficierggresend9.9% of the flow
energy. Thereafter, we thus considéy,; = 6 for the DNS-cylinderconfiguration.
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Figure 2 Relative energy content of the POD eigenvalue spectrurth&DNS-cylinderconfigu-
ration. \; denotes the eigenvalue associated to the POD rmode

When the POD ROM (3) is integrated in time under these camuitithe original flow dynamics
is found globally but the precision is not perfect. As thashi®wn in figure 3, the most energetic
mode is well reconstructed but for the higher modes, the maxre over-estimated. This behavior
is mainly due to the lack of dissipation generated by thedation involved in the POD Galerkin
approach. Indeed, the higher POD modes which correspohe ttigsipative scales of the flow are
not taken into account explicitly in the model. It is thus esgary to model their action, similarly
as what is generally done in Large Eddy Simulation.
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Figure 3 Comparison of the predicted (red lines) and referencekldgmbols) mode amplitudes
for the DNS-cylinderconfiguration. No calibration was used.

In the aim of improving the POD ROM predictive accuracy, vas calibration methods are in-
troduced in the following section where they are tested @DINS-cylinderconfiguration. An
application is then performed in section 4 on i S-airfoil configuration.

3. Calibration methods

Essentially, the idea of the calibration methods is to ihtice into the POD ROM equations aux-
iliary parameters that are determined so that the amplitegdficientsa;(¢), computed by solv-
ing (3), are as close as possible to the corresponding referamplitudes:$*(¢). A strategy
consists in taking as a starting point the general philogaflidata assimilation methods [9]. We
try to improve our knowledge of the system by combining ad a®bossible the observations of
the system states (in our case the exact POD modes), andthefdhe dynamical model (here
obtained by the Galerkin projection). Consequently, thegdibration terms can be estimated by
considering two conditions of increasing level of constrai

1. the form of the calibrated POD ROM equations has to fit treenlations,

2. the temporal dynamics predicted by the calibrated POD R@/to fit the observations.

3.1. COMPUTING CALIBRATION TERMS

Following the analogy with Large Eddy Simulation in turbude modeling, the calibration terms
can be eddy-viscosities functions of the POD mode and eatiyof time [1]. Another possibility
is to add constant or/and linear terms to the set of equafigr®j. The number of free parameters
in the calibrated system depends on the specific approalciwéal in the calibration procedure.
In this study, the following calibration procedures ardedds

linear termsGij: di(t) =C; + (Lij + Gij)aj (t) + Qijka]’ (t)ak(t).
constant termg; and linear termes;;: a;(t) = (Ci+F)+(Lij+Gij)a;(6)+Qijra; (t)ax(t).
eddy-viscositiesy; independent of timei;(t) = C'; + L';ja;(t) + Qijra;(t)ax(t) where

C’; andL';; are deduced front; andL;; by adding an optimal correction factor+ «; to
the terml/R..

3.2. CALIBRATION USING LEAST SQUARES PROCEDURE

To simplify the future description of the various caliboatimethods, le€;; be the generic un-
known calibration coefficients introduced in the previoest®n. Moreover, let us defirig(t) the
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Figure 4 Comparison of the predicted (red lines) and referencekldgmbols) mode amplitudes
for the DNS-cylinderconfiguration. The reduced-order model obtained by Galgrkbjection for

Ny = 6 was calibrated by addition of constant and linear terms.

continuous spline function that interpolates the set ofigsdi(tx, a;*(tx)) }x=1.... n,. The calibra-
tion coefficients’;; can be found as the solutions minimizing the following qadidrfunctional:

Ngal Nt

T (5, Cig) = Y Y ldilts) — aalts))?,

i=1 s=1

where the analytic expression &f(t) is given by (3) andzz—(t) is estimated by numerically evalu-
ating the time derivative of the reference spline.

The minimum ofJ is found when the partial derivativeé®7 /0C;; vanishe. This least squares
problem gives rise analytically to a linear system that eaadived easily and rapidly to determine
Ci;. Indeed, the CPU time needed to compute the calibrationstésess thai.5 second for the
various calibration procedures considered. With this ¢asibration procedure, we now obtain
for the DNS-cylinderconfiguration an accurate POD ROM. This result is clearhhligdpted on
figure 4 where a calibrated model with constant and lineandewvas used. The maxima over-
estimations which occur when the POD ROM is not calibratedcarrected. The prediction is
now correct and even for high-order POD modes.

3.3. COMPARISON OF DIFFERENT CALIBRATION PROCEDURES

In order to compare quantitatively the various calibrafioocedures introduced in section 3.1, we
introduceé;, the temporal reconstruction error associated to the POilemalefined as:

Figure 5 presents, for theNS-cylinderconfiguration, the error§; obtained using the three cal-
ibration methods. Except for the first POD mode (see figurg) d¢here the error is minimal
when the POD ROM is calibrated by using a constant term, ferotiher POD modes the error
is minimal when constant and linear terms are used for thibratibn (for instance, figure 5(b)
represents the error associated to mégeBy adding the errors obtained for all POD modes, it
appears that the calibration using constant and linearsté&the most efficient. In addition, for
this flow configuration, the calibration using eddy viscesitconstant in time provides a worse
approximation than the other calibration procedures.

The differences between these calibration procedures eagxplained by looking at the role
played by the calibration coefficients on the model. In peacthei™ constant term of calibration
only alters the correspondind’ POD mode dynamics, whereas the linear terms of calibration
allow to exploit the interactions between modeand;. Indeed, as one can note on figure 6, the
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Figure 5 Comparison for th®NS-cylinderconfiguration of the temporal reconstruction erfpr
obtained for various kinds of calibration terms. Calitwatis performed using the least squares
procedure.

contributions of the linear calibration terms are greateittie off-diagonal terms, and it is all the
more true for the higher POD modes. However, it is also ndtatithe interactions between modes
are rather local. It seems that the corrections terms otdy tle POD modes corresponding to the
same scales. By nature, the calibration procedures bastgk anodification of eddy viscosities
do not bring any possibility of interaction between POD nwda that, their impact are similar to
the calibration methods consisting in modifying the constarms, even if in practice the constant
and linear terms are corrected at the same time. To makeyfiesaf calibration more effective,
it is interesting to consider time-dependent eddy vis@ssitl]. The best relative efficiency of the
calibration procedures based on the constant and lingasteeems to be explained by its impact
on the whole model. Consequently, thereafter, the resaitsarning the calibration methods will
be based on the determination of the constant and lineasterm

14 1
a
]

POD modej

N
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‘PODmode
Figure 6. Graphical representation of the linear calibration teltamed for theDNS-cylinder
configuration.

3.4. CONSTRAINED OPTIMIZATION PROCEDURE

Although the least squares procedure gives very good sasutie case of thBNS-cylindercon-
figuration, this approach only corresponds to the first dwmistated at the beginning of section
3. A natural improvement of the previous approach congissgeéking the calibration terms as the
solutions of a constrained optimization problem [8]. Indieene can consider that the calibration
procedure is equivalent to determinentrol parameterghere, the constant and linear termis
andG;;) which minimize thecost functional7 (here, a measure of the difference betweg)
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obtained by the calibrated POD ROM afidt) the coefficients of reference) given by:

Ngal Nt

J(ai, Fi, Gig) = > lailts) — aa(ts)]?,

i=1 s=1

under the constraints of tletate equationghere, the calibrated POD ROM):

a;(t) = (A + Fy) + (Bij + Gij)a;(t) + Cijra;(t)ak(t). 4

This constrained optimization problem is solved using tlagriange multiplier method as de-
scribed in [8]. The constraints are enforced by introdudimg Lagrange multipliers or adjoint
variables{,, and the Lagrangian functional

Ngal N¢

E(aiaF‘inij7£k) = (alyF’ZaGl_] ZZ&/&’ Nk alaF‘ZyGlj)

=1 s=1

where the expressiaN(a;, Fi, G;;) = 0 corresponds to the constraints (4).

Considering that each argument®is independent of the others, the optimality system is deter
mined by setting the first variation d@f with respect to the adjoint variablé€g, the state variables
a;, and to the calibration term&; andG;; to be equal to zero.

Setting the first variation of with respect to the Lagrange multipli€r equal to zero, we recover
thestate equationVy(a;, F;, G;j) = 0. When we set to zero the first variation©fvith respect to
the state variable;, theadjoint equationsare derived. Finally, setting the first variation 6fwith
respect to the control parametersandG;; equal to zero yields theptimality conditions These
equations are only equal to zero at the minimum of the oljedtinction.

The optimality systenformed by the state equations, the adjoint equations anaptieality
equations represents the first order Karush-Kuhn-Tuck@mapty conditions for the constrained
optimization problem. This system of coupled ordinary efifntial equations is generally solved
using an iterative method [see 1, for example] because #te stjuations associated to the opti-
mization problem often correspond to a large-scale systkaugands or even million of degrees
of freedom are frequently encountered in engineering caatioms). Here, it is possible to solve
this system of coupled equations using a "one-shot" methoduse the state equations are formed
by a low-order dynamical model with a very small number of emdn this communication, we
use the pseudo-spectral procedure recently suggested. bihé reader is referred to this article
for a detailed description of the numerical procedure. Tdwilts obtained by the least squares
approach can naturally be used to initialize the unknowrirobparameters and thus increase the
speed of convergence of this procedure.

Figure 7 compares, for tHeNS-cylinderconfiguration, the temporal reconstruction erfprel-
ative to the least squares calibration method to the onenglatavith a constrained optimization
method. For this benchmark configuration, the use of a mgukisticated optimization procedure
improves the results obtained by the least squares approawie particularly for the first POD
modesi.e. the most energetic ones.

Finally, from a numerical point of view, the most efficient BQROM calibration method, corre-

sponds to the resolution of a constrained optimization lprab In addition to this aspect of pure
numerical performance, this approach is also more satisfamathematically because it takes
into account in a more complete way the constraints that dfierated POD ROM must check.

The next section thus applies this method to compute canstahlinear calibration terms for the

DNS-airfoil configuration.
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Figure 7. Comparison for th&®NS-cylinderconfiguration of the temporal reconstruction erfpr
obtained for various calibration methods.

4. Application to a massively separated flow around a NACAO12irfoll

In this section, we consider an incompressible two-dimmarai vortex-shedding flow around a
NACAO012 airfoil, for a Reynolds numbeR, = 5000 and an angle of attack = 17°. The
database was computed with the commercial code Fluent amdyisomposed of velocity snap-
shots. Figure 8(a) represents a typical snapshot contamgte database. The flow dynamics
includes a vortex shedding at the leading edge, a massieeatiEm on the upper-side of the air-
foil, and a large wake downstream the trailing edge. As itteaimferred from Fig. 8(b), the energy
of the flow is concentrated on the first POD modes, in a way amhd the first configuration.
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Figure 8 One typical snapshot and relative energy content of the BigEnvalue spectrum for
the DNS-airfoil configuration.

The first 6 modes POD of theNS-airfoil configuration are shown in Fig. 9. The spatial organi-
zation is close to that encountered classically in theditee for theDNS-cylinderconfiguration.
Indeed, the POD modes are associated in pairs of same ewigls,is characteristic of the strong
periodic behavior of the Von Karman vortex shedding in th&eavaf a cylinder. In the case of the
DNS-airfoil configuration, the vortex shedding in the wake of the aiifodlso captured by POD,
which allows a more efficient extraction of the dynamics & tloherent structures.

Following the same methodology as previously, a 8-modes{&al@rkin system which also con-
tains 99.9% of the flow energy is computed. The dynamics prediby the POD ROM without
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(d) mode 4. (e) mode 5. () mode 6.

Figure 9. Iso-values of®} longitudinal component of the spatial POD eigenfunctidnsfor the
DNS-airfoil configuration.

calibration is shown in Fig. 10(a). It appears that the terpdynamics of the system is more
unstable than in the case of thENS-cylinderconfiguration. The maxima over-estimations are
much more important than in the case of i S-cylinderconfiguration, in particular for higher
POD modes where the model tends to diverge at long times.

At the opposite, the calibrated model using constant amghtiterms computed as solutions of a
constrained optimization problem presents a very goodigtied of the system dynamics, even
for the POD modes of high index. The over-estimates are ci@aeand we then succeed to have
an accurate representation of the original dynamics.

5. Conclusion

For the two flow configurations tested in this study, accuP®® reduced-order models could be
developed by using appropriate calibration procedure® mbst efficient method appears to be
the determination of constant and linear terms as solutidbasconstrained optimization problem.
In addition, in order to improve the speed of convergencdisfirocedure of optimization, let us
mention that it is possible to use the control parameteraindd by the least squares method as
initial values.

An immediate prospect of this work consists in solving a flamtcol problem via an optimal
control approach by using a calibrated POD reduced-ordateinas state equations instead of
Navier-Stokes equations. As the POD ROM generally dependhendesign parameters used to
derive it, it will be certainly necessary to use an adaptaghhique of optimization in which the
POD model is recomputed when the control parameters leasaacalled trust-region in which
one estimates that the model is still representative of tiéralled dynamics. Currently, the most
suitable method is the TRPOD algorithm recently proposd8]inThis approach should allow in
a near future to tackle realistic flow control problems.
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