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Abstract. Incompressible flow through a two-dimensional channel with localized suction from
the upper surface is considered as a framework within which to consider the control of unsteady
separation within the context of boundary-layer theory. The strength of the adverse pressure
gradient, which gives rise to the unsteady separation, is determined by the proportion of the
incoming flow into the channel that exits through the suction slot, providing a means by which
to adjust the intensity of the unsteady separation process. Control is implemented through either
a body force throughout the boundary layer or boundary conditions at the lower surface where
the unsteady separation takes place. The control objective is to suppress the onset of unsteady
separation by minimizing a cost functional that retards the separation process while minimizing
the energy input required to accomplish the control. In the present investigation, sub-optimal
control is considered in which the control, i.e. adjoint, equation is solved in a quasi-steady manner
as the unsteady boundary-layer equations evolve in time.
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1. Introduction

1.1. Background

Unsteady separation plays a pivotal role in a number of important high-Reynolds-
number applications in which an adverse pressure gradient acts on a boundary layer
(see Doligalski, Smith & Walker 1994 for a review). The adverse pressure gradient
may be a result of the surface geometry, such as the leading edge of an airfoil at
angle of attack, or it may result from the presence of a vortex above the surface,
such as coherent structures in turbulent boundary layers or the dynamic-stall vortex
above an airfoil or helicopter blade. Alternatively, the adverse pressure gradient
may arise upstream of surface-mounted obstacles or in the vicinity of pipe or vessel
branchings. Unsteady separation begins as a recirculation region forms within the
boundary layer owing to the adverse pressure gradient, and it culminates in an
abrupt ejection of near-wall vorticity into the outer flow (see Obabko & Cassel
2002b, and the references therein). In fact, the unsteady boundary-layer equations
become singular under such conditions (Van Dommelen & Shen 1980, Peridier et
al. 1991). Although the unsteady separation event itself is localized spatially and
occurs over a very short time scale, it often has dramatic global consequences for the
flows in which it occurs. For example, the need to avoid dynamic stall on helicopter
blades and airfoils limits their range of performance and maneuverability.

The fact that unsteady separation is a small-scale, localized event that typically
has global consequences makes it an ideal candidate for flow control. The ability to
control unsteady separation, i.e. to eliminate it in situations where it is undesirable
or induce it in situations where it would be beneficial, could provide a long ‘lever
arm’ with which to modify flows in certain applications toward a more desirable

1



K. W. Cassel et al.

state with minimum energy input required. Elimination of unsteady separation
could increase the performance of aircraft and rotorcraft by delaying dynamics stall
on pitching airfoils, allowing for shortening of the inlet nozzles of aircraft engines
or increasing performance of the compressor and turbine stages of turbomachinery.
Inducing unsteady separation, on the other hand, could dramatically increase fluid
and/or thermal mixing in applications where that would be desirable.

Attempts have been made to control unsteady separation using moving walls,
blowing or suction, and buoyancy forces (see, for example, Alrefai & Acharya 1996,
Degani et al. 1998, Cassel 2001, Obabko & Cassel 2002a). The typical approach to
controlling phenomena, such at turbulence or separation, in fluid dynamical contexts
is to choose or develop an actuator or methodology that modifies the flow field in
a particular manner, and then test the approach on a prescribed problem by com-
paring the control and the no-control behavior to determine the effectiveness of the
control strategy. This approach requires a detailed understanding of the underlying
flow, and all too often it involves measures of effectiveness that are too qualitative
and subjective, appealing to an imprecise notion of how the flow should behave.
As a result, it is difficult to quantitatively compare the effectiveness of various con-
trol schemes with regard to their effectiveness and energy input requirements. This
traditional approach to flow control may work reasonably well for a particular ap-
plication or problem, while leaving the questions of “whether the effort expended in
controlling the flow is justified by the benefits yielded” and “whether the approach
is the best means of controlling the flow” largely unanswered.

Optimal control theory, based on variational methods, offers a more formal means
by which to determine the best approach to meeting a prescribed control objective
in a particular flow environment. Flow control based on optimal control theory has
been applied successfully to drag reduction in turbulent channel flow (see Bewley et
al. 2001, and the references therein) and the flow past a circular cylinder (Min & Choi
1999). This approach requires a clearly articulated prescription of the controlled
flow conditions, i.e. what is meant by optimal control, through specification of a
cost functional to be minimized. Minimization of the cost functional subject to the
constraint that the governing equations are satisfied leads to the optimal approach
to affect the desired control. This provides an upper bound on the potential for
flow control in a given application. In addition, the optimal control results provide
practical guidance to those developing and testing sensors and actuators, such as
1) what type of sensors are required to determine the state of the flow, 2) what
type of actuator most closely emulates the optimal control strategy, 3) what control
authority, i.e. energy input, is required for the intended application, 4) where should
the actuators be placed, and 5) when should they be turned on? Ultimately, the
variational approach could be incorporated into a feedback control loop to determine
the optimal control input for an actual flow state in order to bring about a more
desirable controlled flow at a later time.

1.2. Channel Flow with Suction

An ideal model problem in which to investigate unsteady separation and its control
is the flow through a channel with a suction slot located on the upper surface. The
presence of the suction slot gives rise to an adverse pressure gradient immediately
below it on the lower wall of the channel, which is the primary region of interest
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in the present study. The magnitude of the suction determines the severity of the
adverse pressure gradient and the concomitant response of the boundary layer along
the lower wall. This problem is somewhat simpler than previous model problems in
which unsteady separation has been considered, see for example the vortex above a
wall (Peridier et al. 1991, Cassel 2000 and Obabko & Cassel 2002b), and it allows
for varying of the magnitude of the adverse pressure gradient in a straightforward
manner.
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Figure 1. Schematic of the channel with suction slot.

A schematic of the channel prob-
lem is shown in figure 1. Solu-
tions for the two-dimensional, in-
compressible flow through the chan-
nel subject to suction from the up-
per surface are considered, where Qi

is the inlet volume flow rate, Qo is
the flow rate at the outlet of the
channel, and Qs is the flow rate
through the suction slot, such that
Qo = Qi−Qs. The inlet flow is uni-
form of velocity U , and the height
of the channel is H. The velocity through the suction slot of width b is also uniform
with speed S. The strength of the adverse pressure gradient is determined by the
suction ratio α = Qs/Qi, which gives the relative amount of inlet flow that exits
through the suction slot; thus, Qo = (1 − α)Qi. Note that although this flow is
similar to that investigated by Pauley et al. (1990) and Alam & Sandham (2000), a
Blasius inlet profile was used with a slip condition, i.e. u = 1, along the upper wall
in the referenced investigations in order to more closely emulate an external flow.
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Figure 2. Steady Navier-Stokes solution of channel
flow with suction for Re = 5, 000 and α = 0.08.

In order to illustrate some of
the overall flow features and the
range of possible behaviors, re-
sults are given for computations of
the full unsteady, two-dimensional
Navier-Stokes equations for this
model problem. These solutions re-
veal that for certain ranges of the
Reynolds number (Re = UH/ν)
and suction ratio (α) there are var-
ious regimes involving steady sepa-
ration, unsteady separation and/or
shedding along the lower wall be-
neath the suction slot. Two exam-
ples are shown in figures 2 and 3.
The first case shown in figure 2 with
Re = 5, 000 and α = 0.08 results in
the formation of a steady recirculation region along the lower wall after some period
of time. The second case shown in figure 3 with Re = 10, 000 and α = 0.30 involves
vortex shedding along the lower surface with corresponding unsteady separation
events.
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2. Unsteady Boundary-Layer Control
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Figure 3. Navier-Stokes solution of channel flow with
suction at t = 25 for Re = 10, 000 and α = 0.30.

Optimal control theory is used in
this investigation to evaluate dif-
ferent approaches to controlling, in
this case suppressing, unsteady sep-
aration in the channel flow with suc-
tion within the context of the un-
steady boundary-layer formulation.
The various flow control strategies
can be classified as those that ei-
ther seek to modify the flow using a
body force throughout the domain,
e.g. through plasma actuators or a
Lorentz force, or changes in bound-
ary conditions, e.g. blowing or suc-
tion. Using the optimal control ap-
proach, it is not necessary to decide
on a specific method of actuation, only on whether it is domain or boundary based.
The next section details the unsteady boundary-layer formulation, i.e. the state
equations, that forms the basis for the control algorithm, which is outlined in the
following section.

2.1. Unsteady Boundary-Layer Formulation

Although the overall flow within the channel is governed by the unsteady, two-
dimensional Navier-Stokes equations, it is advantageous to utilize a reduced model,
in this case the unsteady boundary-layer equations, as the basis for investigation
of control of unsteady separation along the lower surface of the channel. Use of a
reduced model, as compared to the full Navier-Stokes equations, results in a con-
trol problem that is much more amenable to solution computationally. Specifically,
rather than two momentum equations as in the Navier-Stokes equations, only one
momentum equation is present in the boundary-layer formulation. In addition, the
boundary-layer formulation governs the early stages of the unsteady separation pro-
cess at high Reynolds numbers during which it is most sensitive to control, resulting
in the most effective means by which to suppress unsteady separation with the least
amount of control input.

The unsteady, two-dimensional Navier-Stokes equations with body force terms
X∗ and Y ∗ are

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

[
∂2u∗

∂x∗2
+

∂2u∗

∂y∗2

]
+ X∗, (1)

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −1

ρ

∂p∗

∂y∗
+ ν

[
∂2v∗

∂x∗2
+

∂2v∗

∂y∗2

]
+ Y ∗, (2)

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0. (3)
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We non-dimensionalize and introduce the boundary-layer scales for the boundary
layer along the lower wall as follows

x =
x∗

H
, y =

y∗

H
Re1/2, t =

t∗U

H
, u =

u∗

U
, v =

v∗

U
Re1/2, p =

p∗

ρU2
, (4)

where the Reynolds number is defined by Re = UH/ν, and we take Re → ∞.
Substituting the scalings into the y-momentum equation (2) leads to ∂p/∂y = 0
to leading order; therefore, p = p(x) is prescribed by the outer inviscid flow and
imposed vertically across the boundary layer. Substituting (4) into (1) and (3) gives
the boundary-layer equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −dp

dx
+

∂2u

∂y2
+ X,

∂u

∂x
+

∂v

∂y
= 0, (5)

where the non-dimensional body force is X = HX∗/U2. The initial conditions are

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (6)

where u0(x, y) and v0(x, y) are specified, and the boundary conditions are

u(x, 0, t) = uw(x, t), u(x,∞, t) = Ue(x), u(±∞, y, t) = u∞(y, t),

v(x, 0, t) = vw(x, t), v(±∞, y, t) = v∞(y, t),
(7)

where u∞(y, t) and v∞(y, t) are specified velocity profiles at upstream and down-
stream infinity, uw(x, t) and vw(x, t) are tangential and normal velocities, respec-
tively, at the lower wall, and Ue(x) is the prescribed external velocity at the outer
edge of the boundary layer from the inviscid solution. Note that the normal body
force term Y ∗ does not appear in the leading-order boundary-layer equations. The
candidate control variables are the body force X(x, y, t), which is a domain-based
control mechanism, and the tangential and normal wall velocities uw(x, t) and vw(x, t),
respectively, which are boundary-based control mechanisms.

The pressure gradient required for solution of the boundary-layer equations is
obtained from the inviscid solution for the flow through the channel. The inviscid
solution for the channel geometry with uniform suction may be obtained using the
method of distributed singularities and images. The resulting streamwise velocity
along the lower wall, which is the external velocity Ue(x) at the outer edge of the
boundary layer, is given by

Ue(x) = 1− α

2
+

α

2
ln

[
cosh(π

2
(x− b

2
))

cosh(π
2
(x + b

2
))

]
. (8)

Recall that α = Qs/Qi is the suction ratio, and b is the width of the suction slot,
here taken as b = 0.5 for all cases. The corresponding pressure gradient along the
lower wall required for equation (5) that is imposed across the boundary layer is
obtained from equation (8) using the Bernoulli equation. The inviscid velocity and
pressure gradient along the lower wall are shown in figure 4 for α = 0.10, i.e. ten
percent of the incoming fluid exits through the suction slot.
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2.2. Optimal and Sub-Optimal Control
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Figure 4. Inviscid solution along the lower wall
for α = 0.10.

Proper selection of a cost func-
tional, which ultimately defines
what is meant by optimal control,
requires a clear understanding of
the physics of the flow to be con-
trolled. For example, to minimize
the drag on an object one would
expect that a cost functional in
which the drag is directly mini-
mized would be the most effective.
However, as shown by Min & Choi
(1999) for the case of a circular
cylinder and Bewley et al. (2001)
for the case of a turbulent channel
flow, this is often not the case as
minimizing the cause of the drag of-
ten is more effective than minimiz-
ing the drag itself. This is partic-
ularly relevant in the present con-
text for which the control objec-
tive is to suppress unsteady sep-
aration, which is not a quantity
that can be minimized, but rather
a phenomenon. Therefore, it is in-
stead necessary to minimize a quan-
tity that will consequently prevent
unsteady separation, requiring in-
timate knowledge of the processes
leading up to unsteady separation.

Recall that the root cause of unsteady separation is an adverse pressure gradient
acting upon the boundary layer. Therefore, what is being sought is a domain- or
boundary-based control mechanism that will counteract the effects of the adverse
pressure gradient on the boundary layer, thereby preventing unsteady separation. In
the present case, the domain-based actuation would be due to some body force, and
the boundary-based actuation would be due to the boundary conditions on velocity
at the surface, e.g. blowing, suction or a moving wall.

Just as with the actuation methods, the performance measures in the cost func-
tional can be based on quantities throughout the domain, such as a target velocity
distribution as in Gunzburger & Manservisi (1999, 2000), where it is referred to as
velocity tracking, or only at the boundaries, such as the wall shear stress. For ex-
ample, the target velocity or shear stress could be set to their corresponding values
in an unseparated boundary layer, i.e. without the action of the adverse pressure
gradient. Moreover, the domain- or boundary-based performance measure may be
applied in one of two ways in the context of optimal control. It may be applied
over a specified time interval 0 ≤ t ≤ T , or it may be applied at a terminal time
t = T , which would lead to the control that should be applied over the time interval
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0 ≤ t ≤ T in order to minimize the cost functional at t = T . Either of the domain- or
boundary-based control approaches, i.e. actuation methods, may be combined with
either of the performance measures to provide an optimal control methodology.

To illustrate the approach, let us consider domain-based control with a domain-
based performance measure. Additional cost functionals may be considered by com-
bining a domain-based performance measure with a boundary-based penalty func-
tion, or by combining a boundary-based performance measure with either a domain-
or boundary-based penalty function as discussed previously. In the domain-domain
case shown here, the control variable is the body force X(x, y, t) throughout the
boundary layer, and uw(x, t) = vw(x, t) = 0. The performance measure consists of
minimizing the difference between the actual streamwise velocity u(x, y, t) and a pre-
scribed target velocity ū(x, y, t). In this case the target velocity may be the Rayleigh
solution for a diffusing boundary layer, i.e. the solution with no adverse pressure
gradient acting on the boundary layer. Therefore, we seek the body force distribu-
tion X(x, y, t) that will most closely produce the desired target streamwise velocity
distribution ū(x, y, t) throughout the domain (performance measure) while mini-
mizing the total energy input required (penalty function). Optimal control is then
defined as the velocity distribution u(x, y, t) and body force distribution X(x, y, t)
that minimizes the following cost functional over a time interval 0 ≤ t ≤ T

J∗[u∗, v∗, X∗] =
1

2

∫ T ∗

0

∫ δbl

0

∫ ∞

−∞

[
c2
wρ(u∗ − ū∗)2 + d (ρLX∗)2

]
dx∗dy∗dt∗, (9)

where δbl is the boundary-layer thickness. The weight coefficient c2
w sets the relative

weights of the two terms in the cost functional. The first term, i.e. performance mea-
sure, represents control effectiveness and minimizes the differential kinetic energy of
the velocity profile. The second term, i.e. penalty function, represents control min-
imization and seeks to minimize one half of the square of the energy introduced by
the body-force input required to accomplish the control. Note that in an actual flow
the performance measure would be based on the measurements from the sensors,
and the penalty function corresponds to the output from the actuators. Setting
c2
w = 0 corresponds to the no-control case, i.e. X(x, y, t) = 0, and increasing c2

w in-
creases the importance of the performance measure relative to the penalty function.
The coefficient d is included in order to maintain dimensional consistency between
the two terms in the cost functional. Note that both terms in the integrand are
squared as it is the magnitude of each that is to be minimized; this also allows for
the performance measure and penalty function to be interpreted as energies. Non-
dimensionalizing and scaling according to equation (4) along with the dimensional
coefficient d = 1/ρU2 gives the non-dimensional cost functional

J [u, v, X] =
J∗

ρH3URe−1/2
=

1

2

∫ T

0

∫ ∞

0

∫ ∞

−∞

[
c2
w(u− ū)2 + X2

]
dxdydt. (10)

Determination of the optimal control strategy consists of minimizing the cost
functional (10) (with specified c2

w) subject to the constraint that the boundary-layer
equations (5) are satisfied. The constraints are included in the cost functional using
Lagrange multipliers, and we take the variation of the functional and set it equal to
zero, i.e. δJ [u, v, X] = 0. This leads to the control, i.e. adjoint, equations

∂X

∂t
+ u

∂X

∂x
+ v

∂X

∂y
+

∂v

∂y
X +

∂Λ

∂x
= −∂2X

∂y2
+ c2

w(u− ū),
∂Λ

∂y
= X

∂u

∂y
, (11)
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where Λ(x, y, t) is a Lagrange multiplier (the other Lagrange multiplier leads to
λ = X). The corresponding initial and boundary conditions are

X(x, y, T ) = 0, X(x, 0, t) = 0, X(x,∞, t) = 0, Λ(x,∞, t) = 0. (12)

From the last condition we can integrate the second of equations (11) from the edge
of the boundary layer toward the wall as follows

Λ(x, y, t) =
∫ y

∞
X

∂u

∂ŷ
dŷ (13)

to obtain the adjoint variable Λ(x, y, t).
The cost functional (10), and the corresponding control equations (11), repre-

sent the optimal control case. The control equation (11) for X(x, y, t) and (13)
for Λ(x, y, t) are coupled with the boundary-layer equations (5) for u(x, y, t) and
v(x, y, t). Note that the control equation in (11) is a convection-diffusion equation
for the body force X(x, y, t) that must be solved backward in time due to the signs
of the unsteady and diffusion terms. This backward time integration is consistent
with the initial condition for the control equation in (12). Therefore, the optimal
control equations must be solved backward in time starting from t = T , while the
boundary-layer equations are solved forward in time starting from t = 0. Because
they are coupled, repeated numerical time integrations of the boundary-layer and
control equations are require in order to obtain the converged optimal solution for
the control variable, in this case X(x, y, t), and the corresponding boundary layer
solution u(x, y, t) and v(x, y, t). In practice, the solution to the optimal control prob-
lem provides an upper bound on the potential for flow control in a given application.

Because solution of the optimal control problem described above is very expensive
computationally, here we consider the sub-optimal case in which the control equa-
tion is solved in a quasi-steady manner (see, for example, Min & Choi 1999). In the
quasi-steady context the unsteady term in equation (11) is eliminated, but the con-
trol variables X(x, y, t) and Λ(x, y, t) remain time dependent as [u(x, y, t)−ū(x, y, t)],
which is the forcing term in the control equation, is time dependent. This corre-
sponds to applying the cost functional at each time t, rather than over a time interval
0 ≤ t ≤ T .

3. Numerical Results

3.1. No-Control Case

Using the same combined Eulerian and Lagrangian approach as in Cassel (2000),
results are shown in this section for the unsteady boundary-layer equations with no
control, i.e. c2

w = 0 and X(x, y, t) = 0. These results illustrate the unsteady separa-
tion process that is to be suppressed, and they provide the baseline for comparison
with the sub-optimal control results in the next section.

For a case with α = 0.10, i.e. ten percent of the incoming flow is diverted through
the suction slot, Figure 5 shows the instantaneous streamlines at three successive
times. The suction slot in the upper wall, which is centered at x = 0 and has
width b = 0.5, produces an adverse pressure gradient that acts on the boundary
layer along the lower wall, which is at y = 0. As shown in figure 5(a), the adverse
pressure gradient leads to formation of a recirculation region. This recirculation
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region grows in size normal to the wall and causes the flow in the outer portion of
the boundary layer to change directions abruptly in order to pass over it as shown
in figure 5(b). Intensification of the
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(c) t = ts = 16.35.

Figure 5. Boundary-layer solution for α = 0.10.

flow normal to the wall on the up-
stream, i.e. left, side of the recircu-
lation region eventually results in a
non-interactive boundary-layer sin-
gularity as in Van Dommelen (1980)
and Peridier et al. (1991). This is
shown in figure 5(c) at the singu-
larity time t = ts = 16.35, at which
time the displacement thickness and
normal velocity at the outer edge of
the boundary layer become singu-
lar. Increasing the suction ratio α
accelerates the unsteady separation
process such that the singularity oc-
curs at earlier times.

3.2. Sub-Optimal Control Case

Numerical results for the quasi-
steady, sub-optimal control case will
be shown during the conference.

4. Conclusions

Sub-optimal control of the unsteady
separation that occurs along the
lower wall of a channel with a
suction slot along the upper wall
is considered using the unsteady
boundary-layer equations as the
state equations. Various combi-
nations of domain- and boundary-
based performance measures and
penalty functions are considered
with respect to their ability to sup-
press the unsteady separation pro-
cess. The sub-optimal approach
consists of solving the unsteady
boundary-layer equation along with the quasi-steady control equation, i.e. the con-
trol equation must be satisfied at each time during the evolution of the unsteady
boundary-layer.

Although the sub-optimal control approach considered here would be expected to
result in a control scenario that requires more energy input than the optimal control
approach, it provides considerable insight into the feasibility of the various control
methodologies. The four possible approaches are 1) domain-based control with
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domain-based performance measure, 2) domain-based control with boundary-based
performance measure, 3) boundary-based control with domain-based performance
measure, and 4) boundary-based control with boundary-based performance measure.
The sub-optimal control results obtained here, which can be obtained much more
efficiently than the optimal solution, will guide future investigations of the optimal
control approach by suggesting which combinations of performance measure and
penalty function are most effective in suppressing unsteady separation.
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