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Abstract. Direct numerical simulations of a short laminar separation bubble and its
bursting are carried out. The bubble is developing on a flat plate due to an externally im-
posed pressure gradient. Laminar-turbulent transition in this bubble is triggered by small
disturbance input with fixed frequency. The short bubble with disturbance input reaches
a statistically steady state, while switching off this input yields a growing separation bub-
ble. This phenomenon is denoted as bubble-bursting process. Disturbance input does not
only prevent bursting, but can also serve to control the bubble size, which decreases with
increased disturbance amplitude. Forcing at two different frequencies in the form of a
beat is applied to control skin-friction and pressure distribution more independently.
Keywords: laminar-turbulent transition, instability, separation, DNS, flow control

1. Introduction

A laminar separation bubble (LSB) can originate if an initially laminar boundary
layer is subject to a sufficiently strong adverse pressure gradient, and laminar-
turbulent transition occurs in the detached shear-layer. Further downstream, the
turbulent flow often reattaches in the mean, forming a closed bubble.

LSBs can be observed on laminar wing profiles or on high-lift devices to name
but two examples. In environments with low disturbance levels, the transition pro-
cess in a LSB is typically governed by a strong amplification of high-frequency,
2-d or weakly oblique fluctuating disturbances.

1.1. BURSTING OF LAMINAR SEPARATION BUBBLES

Owen and Klanfer [15] were the first to distinguish between short and long LSBs.
Their classification is based on the bubble length in comparison to the chord of an
airfoil. Tani [21] introduced a classification of long and short LSBs depending on
whether their influence on the pressure distribution is local or global.
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Under certain conditions, for slight changes in flow conditions, short bubbles
can break-up into long ones, so-called bubble bursting. For bodies of finite dimen-
sion like airfoils, the flow might not reattach at all. This can lead to stall [13]. On a
semi-infinite flat plate, the flow will finally reattach in any case. Laminar-turbulent
transition plays a key role for reattachment of a short LSB. This suggests an in-
terconnection of transition and bubble bursting. Even though laminar-turbulent
transition in LSBs has been the subject of numerous studies in the past, both
experimentally [9, 22] and numerically [1, 6, 12, 20], flow dynamics of bubble
bursting is not yet well understood.

Gaster [5] carried out an investigation to settle characteristics of short and long
bubbles and to develop a bursting criterion based on a pressure-gradient parameter
and a local Reynolds number. Pauley et al. [16] suggested that bubble bursting
coincides with the onset of vortex shedding in an otherwise fully steady separation
bubble. Diwan et al. [3] introduced the height of the bubble as an additional
parameter. However, none of the criteria have found general acceptance so far [3].

Recently, Marxen and Henningson [11] considered bursting as a dynamical
process. They suggested to distinguish between two different forms of bubble
bursting, depending on whether the long-bubble flow at reattachment is laminar
as in [16] or turbulent as in [5]. Here, we concentrate on the latter case.

1.2. FLOW CONTROL OF LAMINAR SEPARATION BUBBLES

Control of laminar separation using zero-net mass flux (ZNMF) devices on the
surface of airfoils is a common approach. It has been applied to airfoils operating
at low to medium Reynolds numbers and to flow over flat plates with imposed
pressure gradient in laboratory-type investigations. Both, numerical [4, 8, 17, 18]
and experimental [2, 19] models have been used. For unsteady blowing/suction
using ZNMF devices, ongoing physical processes in such flows can be diverse,
spanning from convective-type instability [17] to vortex-wall interaction [18].

2. Physical Model and Numerical Method

The basic configuration in this article is given by a flat-plate boundary layer at a
sufficiently high Reynolds number subjected to a streamwise pressure gradient.
Qualitatively, the set-up is similar to the one used in [5] or [9]. A pressure gra-
dient is induced via the streamwise velocity at the upper boundary. The resulting
pressure distribution changes downstream from strongly favourable to strongly
adverse, which is not uncommon in applications. In a laboratory experiment,
such a pressure gradient could be caused by putting a displacement body into the
flow at some distance from the plate as e.g. in [9].
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Table 1. Resolution used for DNS.

MMAX NMAX KMAX + 1 IMAX LPER
769 3501 72 2 900

2.1. NUMERICAL METHOD

Direct numerical simulations (DNS) are carried out based on the three-dimensional
unsteady Navier-Stokes equations in vorticity-velocity formulation for an incom-
pressible fluid. The computational code was developed at the Institut für Aerody-
namik und Gasdynamik (IAG), Universität Stuttgart. Further details, i.e. discreti-
sation, numerical method, and implementation, can be found in [7, 14].

A Cartesian coordinate system with streamwise x, wall-normal y and span-
wise dimension z is located at the wall. The method uses finite differences of
fourth/sixth-order accuracy for downstream (NMAX) and wall-normal (MMAX)
discretisation. Grid stretching (only) in wall-normal direction allows to cluster
grid points m near the wall according to the following formula (1 ≤ m ≤ MMAX),
with κ=0.15:

ym = ymax

(
(1− κ) ·

(
m− 1

MMAX− 1

)3

+ κ ·
(

m− 1

MMAX− 1

))
. (1)

In spanwise direction, a spectral Fourier ansatz is applied (KMAX + 1 modes) for
complex modes (IMAX=2). An explicit fourth-order Runge-Kutta scheme is used
for advancing a vorticity-transport equation in time with LPER time steps per
fundamental period T0. The solution of a Poisson equation for the wall-normal
velocity is obtained by a direct method based on a Fourier expansion. A grid
study [10] confirmed the resolution given in Table 1 to be sufficient.

2.2. NON-DIMENSIONALISATION AND BOUNDARY CONDITIONS

All quantities are non-dimensionalised using a reference length Lref=1.16 · δ∗ifl,
derived from the displacement thickness δ∗ifl at the inflow, and the free-stream ve-
locity U∞ at the inflow. The global Reynolds number Re=U∞Lref/ν amounts to
600, corresponding roughly to the local Reynolds number based on the displace-
ment thickness at x=0. At the inflow boundary xifl=−320 a Blasius similarity
solution is prescribed with a Reynolds number based on the displacement thick-
ness Reδ∗

ifl
=515.02.

Upstream of the outflow boundary, which is located at xofl=441.905, a damp-
ing zone smoothly returns the flow to a steady laminar state. The useful region
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of the integration domain extends up to x≈380. At y=0 a no-slip wall is placed.
Flow through this wall does only occur within a disturbance strip (see below).
Wall-normal height of the integration domain ymax is chosen to be 160. At the
upper boundary, vorticity components are set to zero and the streamwise velocity
u is set according to the following formula:

u(ymax) = 1 + a1 · exp(−b1x
2) + a2x

2 · exp(−b2x
2), (2)

with the choice a1=10.0, a2=−41.0, b1=200.0, and b2=12.0. In the homogeneous
direction z the flow is assumed periodic with a spanwise extent λz=52.360.

Simulations are performed with deterministic disturbance input. A pair of
oblique time-harmonic perturbations is triggered via blowing and suction at the
wall through a ZNMF disturbance strip. The streamwise location of the strip is
x ∈ [xs=1.5238, xe=15.4558]. Forcing is prescribed for each wave of the pair
separately within the strip, with a velocity amplitude perpendicular to the surface
distributed as

v̂wall = Av/U∞(x̃7−3x̃5+3x̃3−x̃)/0.238, x̃ = 2(x−xe + xs

2
)/(xe−xs). (3)

Amplitude Av and circular frequency β=2π/T=2πf for the wall-normal veloc-
ity will be specified below for each case, respectively. Fundamental spanwise
wavenumber for the disturbances is γ0=0.12 in all cases. An initial condition is
composed of a blending of a slip-flow (see section 3.1.) and a Blasius boundary-
layer solution.

3. Direct Numerical Simulations of Bubble Bursting

A DNS of a short LSB shall serve as a reference for application of flow control.
Results from this reference DNS will be described in section 3.2. However, to
visualise the set-up we consider a two-dimensional slip flow for the same basic
configuration first (section 3.1.).

3.1. SLIP FLOW

Replacing the lower boundary by a slip wall, the resulting slip-flow field uslip, vslip

resembles a potential flow created by a cylinder (i.e. a dipole) above a wall [10]. A
strong acceleration of the flow along the wall is followed by a strong deceleration.
The streamfunction gives a good visualisation of the configuration (Fig. 1).

This slip flow does not only serve to generate an initial condition for DNS or
to visualise the configuration. It will also be used for comparison with DNS with
respect to the corresponding wall-pressure coefficient.
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Figure 1. Contours of the stream function for slip flow.
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Figure 2. Coefficients for surface pressure cp and skin-friction cf . Left: Compari-
son of slip-flow results (thin, blue) and time-averaged DNS reference results with
Av=10−4 (thick). Right: Comparison of slip-flow results (thin, blue) and DNS re-
sults during bursting (thick) after disturbance input has been switched off around
t=46T0, time-averaged over the interval [81T0, 85T0].

3.2. REFERENCE SEPARATION BUBBLE AND ITS BURSTING

A single pair of oblique waves is forced via the disturbance strip with an amplitude
Av=0.5 · 10−4. Fundamental frequency of this mono-harmonic forcing is β0=0.3.
It is among the most amplified frequencies according to linear stability theory and
its amplification agrees well with the theory (see Fig. 5 in [11]). The computation
is advanced until a statistically steady state has been reached. More details on this
case can be found in [10, 11].

Wall-pressure coefficient cp is seen to deviate from the case of slip flow only in
the vicinity of the LSB (Fig. 2, left). This is in agreement with the expectation that
a short LSB has only a local and limited effect on the potential flow. Furthermore,
the formation of a pressure plateau is clearly seen in the region 50<x<80. The
skin-friction coefficient at the wall cf (Fig. 2, left) reveals the separation location
to lie at xS ≈ 34, while the flow reattaches in the mean at xS ≈ 89.

Gradually switching off disturbance input between t=45T0 and t=47T0 initi-

5



O. MARXEN AND D.S. HENNINGSON

x [-]

t/T
0

[-]

0 50 100 150

40

50

60

70

80

X [-]

-c
p,

c f
×

1
02

0 50 100 150
-0.4

0

0.4

0.8

1.2
Av=0.5⋅10-4

Av=0.5⋅10-3

slip flow

cf

cp

Figure 3. Left: Contours of vanishing skin-friction at the wall for a simulation
where disturbance input was switched off around t/T0=46 (solid line). Grey con-
tour gives the region of negative skin friction in reference DNS with Av=10−4.
Right: Coefficients for surface pressure cp and skin-friction cf . Comparison
between DNS results with Av=10−3 (solid) and reference DNS with Av=10−4

(dashed).

ates a continuously growing separation bubble (Fig. 3, left). Eventually the reat-
tachment point has moved considerably further downstream and influence on the
pressure distribution is much stronger (Fig. 2, right). This process of deviation
from the initially statistically-steady state shall be denoted as the bubble-bursting
process. It has not yet stopped at the end of the bursting simulation t=85T0.

Clearly, disturbance input is essential to maintain a short bubble in the present
case. For that reason, the disturbance input can already be considered a means of
flow control. On the other hand, its amplitude is so small that it can as well just
be regarded as background noise instead.

4. Evaluation of Strategies for Separation Control

The last section has already demonstrated potential to control bubble bursting
via unsteady ZNMF wall blowing/suction. As it was indicated there, the ZNMF
actuator triggers an instability (of Kelvin-Helmholtz type) in the flow similar to
the approach in [17]. However, below we will not only consider mono-harmonic
forcing, but also forcing simultaneously at two different frequencies.

At first, we want to control the size of the corresponding short bubble (section
4.1.) by means of amplitude variation. However, if the control goal is to prevent
bursting, triggering transition might not be required continuously due to a slow
growth of the bubble from short to long state. Moreover, this might allow to
control wall-pressure and skin-friction distribution more independently. Thus, one
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Figure 4. Left: Contours of vanishing skin-friction at the wall for multi-harmonic
forcing (solid line). Grey contour gives the region of negative skin friction in
reference DNS with Av=10−4. Right: Coefficients for surface pressure cp and
skin-friction cf . Comparison between DNS with multi-harmonic forcing (solid)
and reference DNS with Av=10−4 (dashed).

could introduce a second, much lower frequency, e.g. in form of a beat (amplitude
modulation) or a wave packet localised around the most unstable frequency in
spectral space. The former approach will be considered here (section 4.2.).

4.1. CONTROLLABILITY OF BUBBLE SIZE

Ref. [17] applied unsteady, mono-harmonic ZNMF wall blowing/suction in a sim-
ilar fashion as it is done here. In their conclusions, they posed the question
whether their flow-control “method is sufficiently strong to prevent an “open sepa-
ration”.” If we increase disturbance amplitude by an order of magnitude compared
to the reference DNS, we see the size of the (short) bubble decrease (Fig. 3, right).
Therefore, the approach of [17] can be applied in our case where the bubble would
undergo bursting, and thus become “open”, if uncontrolled. Note that both, cp and
cf , simultaneously react to flow control.

4.2. MULTI-HARMONIC FORCING

Growth of the separation bubble during bursting is a complex process in which
the shear layer moves away from the wall while the reverse-flow region increases
downstream and upstream. It can bee seen from Fig. 3 (left) that the time scale of
this bursting process is much longer than the one of the instability. The latter is
triggered in the simulations by forcing. This leads to the idea of a multi-harmonic
forcing in the form of a beat. Such a forcing might be beneficial when the aim
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is an overall reduction of pressure and skin-friction drag simultaneously. In this
case it is desirable to control pressure and skin-friction distributions in a more
independent way then it was done in section 4.1. Here, we just consider feasibility
of this concept without looking in detail at the actual control gain.

Two pairs of oblique waves are forced via the disturbance strip with an ampli-
tude Av=0.25 · 10−4 each. Frequency of one of the wave pairs is β1=0.27 while
that of the other is β2=0.33. This can be interpreted as forcing a single pair of
oblique waves with β0=0.3 similar to before but with a low-frequency amplitude
modulation of frequency βB=0.03=1/10β0, and thus Av(t)=0.5 · 10−4 · cos(βBt).

Differences between the reference case and multi-harmonic forcing are small.
Both cases possess a very similar time evolution of skin friction (Fig. 4, left).
Apparently, bursting is still prevented. Nevertheless, in the multi-harmonic case,
patches of negative skin-friction are seen further downstream. These observa-
tions are confirmed if we look at time-averaged quantities. Both LSBs exhibit
essentially the same pressure distribution, but in case of multi-harmonic forcing
reattachment is shifted slightly further downstream (Fig. 4, right).

5. Conclusion

Time-dependent three-dimensional DNS of a flat-plate boundary layer subject to
a strong favourable-to-adverse pressure gradient has been carried out. With small
disturbance input, laminar-turbulent transition is triggered and a short laminar
separation bubble develops. If disturbance forcing is switched off, the transition
process is no longer able to immediately reattach the flow. As a result, a bursting
process towards a long LSB sets in.

Increasing the forcing amplitude of such single-frequency forcing reduces
bubble size. A feasibility study of forcing at two frequencies in the form of
a beat indicates that pressure and skin-friction distribution are controllable in a
slightly more independent way. Such multi-harmonic forcing might be favourable
for separation-control strategies to prevent bursting with small energy input and
to lower both pressure- and skin-friction drag.
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