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Abstract. A low-dimensional model is developed on the basis of the unsteady compressible
Navier-Stokes equations by means of POD-Galerkin methodology in the perspective of physical
analysis and computational savings. This approach consists in projecting the complex physical
model onto a subspace determined to reach an optimal statistical content conservation. This leads
to a drastic reduction of the number of degrees of freedom while preserving the main flow dynamics.
The high-order system formulation is modified and an inner product which couples the contribu-
tions of both kinematic and thermodynamic state variables is selected. The associated reduced
order model is a quadratic polynomial ordinary differential equation system which presents an
inherent sensitivity to POD basis truncation for long-term prediction. A calibration process based
on the minimisation of the prediction error with respect to reference dynamics is implemented.
The predictive capacities of the low-order approach are evaluated by comparison with results is-
sued from the 2D Navier-Stokes simulation of a transonic flow around a NACA0012 airfoil, at
zero angle of incidence. This configuration is characterised by a complex unsteadiness caused by a
von Kármán instability mode induced by shock/vortex interaction, and a low frequency buffeting
mode.
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1. Introduction

The purpose of the present study is to develop a Reduced-Order Model (ROM) for
the prediction of the complex wall-flow features induced by compressibilily effects
at high transonic regimes. From a general point of view, the objective of surrogate
modeling is to mimic a realistic and complex physical model by a local but faithfull

approximation involving lower calculation costs. In the context of mutli-disciplinary
optimisation or fluid/structure interaction, where complex physical simulations are
integrated into iterative processes, low-dimensional models can allow drastic gains
of computational ressources. Moreover, such approaches represent relevant tools for
physical investigations owing to their inherent mathematical simplicity, especially
in the transitional case.
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To elaborate reduced-order models, meta-modeling like polynomial interpolations,
neural networks or response surfaces are often developed on the basis of a pure
data-driven approach which involves many high-order computations. The physic-
driven methodology presented in this paper consists in a Galerkin projection of the
complex model onto a finite-dimensional basis determined to reach optimal energy
reconstruction. The physical model is the compressible Navier-Stokes system. The
basis is issued from a separable Proper Orthogonal Decomposition (POD, [1], also
known as Karhunen-Loève expansion [2]) of the flow variables, which extracts the
main fluid energetic properties ([3], among others). The corresponding low-order
model is an ordinary differential equation system of considerably reduced dimension
compared to the high-order one. This ROM enables the prediction of the main flow
dynamics.
Various low-order dynamical models were derived from the incompressible Navier-
Stokes system. In 2D, the laminar flow past a circular cylinder [4] and transitional
cavity flows [5] were efficiently predicted by POD-Galerkin approach. The relevance
of this methodolody was illustrated in the 3D laminar case [6][7] with databases is-
sued from Direct Numerical Simulations. The inherent instability of POD-Galerkin
systems was studied and calibration processes lead to significant improvments, based
on the addition of an artificial dissipation [8], on data-driven optimisations in the
laminar case [9], in the transitional/turbulent case [10], and on the introduction of
additional instability or “shift” modes in the low-order basis [11]. POD-Galerkin
models were integrated into optimal control processes [12] and error estimates were
obtained in this context [13]. Theoretical extensions were developed to increase
the robustness of the empirical basis with respect to changes in flow configuration
[14]-[17] and to adapt the POD basis to domain deformations [18] in the perspec-
tive of design optimisation. The case of reacting flows involving dilatation effects
was investigated in [19] by means of a coupling between POD modes, “shift” and
“expansion” modes.
For compressible flows, the coupling of kinematic and thermodynamic variables in
the state system induces specific difficulties concerning the state variable formulation
and the inner product invovled in the POD. In [20] a general framework was provided
to derive low-order models based on the inviscid Euler equations, via POD-Galerkin
approach, among others. Promising results are reported in [21], considering an
approximation of the compressible Navier-Stokes system valid for moderate Mach
numbers and cold flows, by means of an isentropic inner product. As discussed in
the present paper, a specific variable change considerably simplifies the ODE system
obtained after projection of the complex physical model onto the empirical basis
[22][23]. Investigations of stability properties lead to relevant ROM for moderate
Mach numbers and short time predictions, in laminar and transitional cases [24].
In the present paper, an accurate POD-Galerkin model is derived from the com-
pressible Navier-Stokes system expressed in term of modified state variables. The
classical spatial inner product is extended to the compressible case and the corre-
sponding quadratic polynomial ODE system enables flow dynamic reconstructions
including all state variable contributions. Taking into account of the inherent insta-
bility of this low-order model, a stabilisation strategy is applied. Optimal constant
and linear terms are added to the dynamical system in order to minimize a specific
prediction error with respect to the initial reference dataset. The reliability of the
calibrated low-order model is examined in the high transonic regime, in the two-
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dimensional case at first. The unsteady compressible flow past a NACA0012 airfoil
at moderate Reynolds number is considered. The database is issued from a direct
numerical simulation via ICARE/IMFT compressible solver [25]. The complex un-
steadiness of this configuration is induced by compressibility effects and especially
by shock/vortex interaction, as detailled in the first section. In the following, the
extraction of the empirical POD basis, the development of the Navier-Stokes ROM
and the calibration process are described. The predictive capacities of the present
low-order approach are quantified in the last section.

2. Physical context

2.1. Transition features in the compressible flow past an airfoil

The transonic flow past a NACA0012 airfoil at zero angle of incidence develops an
inherent unsteadiness due to compressible effects during the transition to turbulence.
At moderate Reynolds number 0.5 − 1 × 104, the flow is steady at the incompress-
ible regime. At Mach number higher or equal to 0.3 the onset of a von Kármán
instability occurs in the wake (mode I). In the Mach number interval [0.5, 0.7], this
mode I becomes more pronounced and the periodic alternating vortex pattern is
clearly developed. The near-region is progressively contaminated by the instability
developing in the wake. At Mach number 0.75 a lower frequency mode induced by
the oscillation of the supersonic pockets is observed (buffeting) and this mode II has
disappeared at Mach number 0.85. Thus, the configuration studied in the present
paper (Mach number 0.80, Reynolds number 104) is characterized by a complex
unsteadiness caused by the two instability mode interaction (Fig. 1). More details
about the flow physics of this specific two-dimensional configuration can be found
in [25][26]-[28].

Mach: 0.40 0.57 0.74 0.91 1.08

(b)
Mach: 0.40 0.57 0.74 0.91 1.08

(a)

Figure 1. (a) Re = 5000 and M = 0.85: Mode I. (b) Re = 10, 000 and M = 0.8: Mode I
and Mode II (present study).

2.2. The compressible Navier-Stokes system

The high-order model to approximate is the unsteady compressible Navier-Stokes
system. If no external effort and no external heat flux are imposed on the fluid
flow, the governing equations expressed in term of conservative variables can be
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formulated as follows, in two dimensions:

U,t +Fi,i = F vis
i,i with U =
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where ρ is the volumic mass, ui are the components of the velocity, p is the ther-
modynamic pressure which satisfies the ideal gas law p = ρRTp where Tp is the
temperature and R is the ideal gas constant. τij = µ ((ui,j + uj,i) − 2/3uk,kδij) is
the viscous effort tensor where µ is the fluid viscosity, qi are the components of the
heat flux (qi = −CT Tp,i, with the conductivity coefficient CT ) and δij is Kronecker
symbol. e is the total energy defined by:

e = CvTp +
u2

1 + u2
2

2
,

where Cv is the specific heat coefficient. .,t and .,i denotes respectively the time
and space derivatives. Concerning the boundary conditions at the frontiers of the
physical domain, only time-independent relations are prescribed: constant values on
inflow frontier and free-stream conditions on the outlet. No-slip condition is imposed
on the airfoil.
The numerical dataset is issued from a calculation via ICARE/IMFT compressible
solver. This is a structured finite volume code in which Roe’s upwind spatial scheme
is implemented with MUSCL approach for the convective part and a centered sec-
ond order scheme for the diffusive term. The temporal integration is ensured by an
explicit four-stage Runge-Kutta scheme of fourth order accuracy. The C-type mesh-
grid (Nx = 369×89 nodes) used was validated in the present flow configuration, the
corresponding pressure and aerodynamic coefficients are reported in [25].

3. The POD-Galerkin model

3.1. Reduced order basis extraction via POD

The Proper Orthogonal Decomposition is a Singular Value Decomposition which
consists in expanding each physical variable as a linear combination of specific eigen-
fonctions. The POD of a time/space-dependent function v can be written as follows:

v(x, t) ≈

NPOD
∑

i=1

aiΦi(x, t), or v(x, t) ≈

NPOD
∑

i=1

yi(t)Φi(x) (1)

assuming time/space separation. yi are time-dependent functions and Φi station-
nary spatial modes determined as successive solutions of the following constrained
optimisation problem:

Φi+1(x) = arg max
φ∈L2(Ω)

〈

(v − Πiv, φ)2
〉

subject to ‖φ‖2 = 1, (2)

where < . > represents a temporal averaging, Ω is the spatial domain, (., .) is an inner
product which has to be defined on L2(Ω) and Πi is the projector onto {Φ1, ..., Φi}.
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Finding Φi in (2) is equivalent to find the orthonormalised eigenvectors of a state
variable spatial correlation matrix. After discretisation, Nx is the number of space
discretisation points and Nt the number of flow snapshots collected. If the first
NPOD spatial modes are taken into account with NPOD << Nx and NPOD << Nt,
the expression (1) provides a low-order approximation of v which is optimal in the
sense of energy reconstruction. The “snapshot-POD” technic [29] consists in finding
the eigenvectors of the temporal correlation matrix which reduces considerably the
size of the problem in the case of numerical simulations where Nx >> Nt. The
spatial inner product involved in (2) is a crucial point in case of multiple state
variables (vi, i = 1, ..., 4). In the present study the classical choice is adopted by
considering an addition of the each state variable contribution as in [22][24]:

(s1, s2) =

4
∑

i=1

∫

Ω

vi
1v

i
2dx.

This approach allows an important reduction of the number of degrees of freedom
in the state system, from 4×Nx to NPOD. Only time-independent boundary condi-
tions are prescribed and the POD has to be calculated on time-centered snapshots
(vi(x, t) − vi(x)) because spatial modes can only respect homogeneous boundary
conditions. The expansion of each state variable is then:

vi(x, t) ≈ v̂i(x, t) = vi(x) +

NPOD
∑

j=1

yj(t)Φ
i
j(x), with vi(x) =

1

T

∫

T

vi(x, t)dt. (3)

3.2. Projection onto the POD basis and stabilsation strategy

A direct use of the variable expansions (3) in the previously defined compressible
system leads to fractional expressions which do not allow trivial Galerkin projection
onto the POD basis. An alternative is suggested by [22] to derive a quadratic
polynomial ODE system by considering a modified formulation of the state vector
U → Ũ = [1/ρ u1 u2 p]t. The corresponding low-order model is then, for i =
1, ..., NPOD:











ẏi =
NPOD+1
∑

j,k=1

(aijk + bijk) y+
j y+

k +
NPOD
∑

j=1

cijyj + di = fi(c, d, y)

yi(t0) = (v(x, t0) − v(x), Φi(x))

with
{

Φ+ = {v, Φ1, ..., ΦNPOD
}

y+ = {1, y1, ..., yNPOD
}.

aijk and bijk are constant coefficients issued from the projection of the modified
advective and diffusive terms of the Navier-Stokes system. The initial conditions
of the ODE system are the projections of the modified variable fluctuations onto
the reduced basis. This dynamical system represents an approximation of the high-
order one which allows important computational savings. However, when the mode
truncation is applied on the POD basis, the less energetic modes which contain
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dissipative spatial scales, are neglected. This could be an explanation for the in-
herent instability encountered when integrating POD-Galerkin models. In order to
overcome this lack of dissipation, empirical artificial terms are often added in the
ODE system [30][8]. Following the approach developed by [10] in the incompressible
context, optimal linear and constant coefficients (cij and di) found as solutions of a
minimization problem, involving the following objective function, are incorporated
in the ROM:

J(c, d) =
1

2

NPOD
∑

i=1

Nt
∑

j=1

(yi(tj) − ŷi(tj))
2 with ŷi(tj) = yi(t0)+

∫ tj

t0

fi(c, d, ŷ(t′))dt′. (4)

This cost function quantifies at least square sense the prediction error of the ROM
with respect to the reference dynamics. The corresponding non-linear optimisation
problem is simplified by replacing the predicted dynamics (ŷ(t′)) with the refer-
ence ones (y(t′)) in the Cauchy problem integration, which leads to a linear sytem
resolution.

4. Validation results
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Figure 2. POD mode eigen-spectrum (red
squares), global energy reconstruction (or-
ange triangles).

A high-order simulation is performed over
one period of the buffeting mode (∆t =
0.0437s) which corresponds to approxi-
mately twenty von Kármán periods of the
established flow. 2, 200 snapshots (Nt =
2, 200) are collected regularly in order to
build a dataset for the empirical basis ex-
traction. The “snapshot-POD” methodol-
ogy is applied and Nt spatial POD modes
are derived. The eigenvalues associated
with these modes (Fig. 2) represent their
informational content or “inertia” in the
sense of the Principal Component Analy-
sis, as well as the energy contained in the
corresponding spatial structures. The dimension reduction consists in retaining only
the most energetic modes. The truncation is based on the statistical content con-
veyed by the first NPOD modes:

INPOD
=

(

NPOD
∑

i=1

λi

)

/

(

Nt
∑

i=1

λi

)

.

In the present case, NPOD = 16 modes are taken into account, which represents
99% of the database inertia as shown in Fig. 2. The right hand side of the energy
spectrum is neglected when computing the constant coefficients of the POD-Galerkin
ODE system, at first. Spatial modes (Fig. 3) are characterised by symmetrical
patterns induced by the shape of the transonic flow instabilities. The von Kármán
instability is efficiently described by the two first modes whereas the following peer is
undoubtedly related to the low frequency buffeting. This fact confirms the relevance
of the POD technic in the context of modal analysis. The combination of the two
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Figure 3. Six first spatial POD modes, Re = 10, 000 and M = 0.8.

instability modes is emphasised by the first temporal modes represented in Fig. 4:
a strong modulation of the von Kármán mode by the low frequency one is observed
on the fourth peer.
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Figure 4. Eight first dynamics over one buffeting period: reference (black squares) and
prediction via calibrated ROM (red lines).

The reference temporal modes are issued from the projection of the time-centered
database onto the spatial modes. The purpose of the low-order model is to pre-
dict these main dynamics. The calibration coefficients are computed on the basis
of the minimization of the prediction error (4). These stabilisation terms can be
regarded as an “a posteriori” mean to take into account of the truncated part of
the POD basis. The integration of the ROM is ensured by a fourth order accuracy
Runge-Kutta scheme over the snapshots temporal horizon from the initial condition.
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From a numerical point of view, the model reduction induces a considerable gain of
computational time, from approximately four hours for the complete Navier-Stokes
simulation to 2.9 secondes for the ROM. As shown in Fig. 4 the dynamics are rigor-
ously predicted by the reduced order approach: the signal amplitudes are respected
and no phase-lag is observed even for low energy modes as the efficient prediction
of the seventh and eighth dynamics proves it. The predicted pressure over a period
of buffeting is monitored at two location points: on the airfoil near the trailing edge
and in the near wake above the symmetry line (Fig. 5). The prediction by the

Time (s)

P
re

ss
ur

e

0 0.01 0.02 0.03 0.04

24.5

25

25.5

26

26.5
(a)

Time (s)

P
re

ss
ur

e

0 0.01 0.02 0.03 0.04

26

27

28

29

30

31(b)

Figure 5. Pressure prediction at two location points, (a) on the airfoil, (b) in the near
wake: reference (black squares) and prediction via the calibrated ROM (red lines).

calibrated ROM presents a good match with the reference pressure computed with
the high-order Navier-Stokes system.
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Figure 6. Global reconstruction error of
the state variables over one buffeting pe-
riod: POD filter (black line) and calibrated
ROM (red line).

A global prediction error is defined as fol-
lows, at ti:

E(ti) =











4
∑

j=1

||vj(x, ti) − v̂j(x, ti)||
2

4
∑

j=1

||vj(x, ti)||
2











1/2

,

where vj is the reference and v̂j the approx-
imation. Over the temporal horizon of the
snapshots, the prediction error of the ROM
is in the same order of magnitude than the
reconstruction error induced by the POD
basis truncation (Fig. 6). Moreover, this
error remains stable and the weak growth
along the period can be explained by a very slight phase-lag which is not significant
when considering the whole field prediction after one buffeting period. In Fig. 7 the
longitudinal velocity and the pressure fields obtained by high and low-order simu-
lations are represented using the same contour levels. The perfect match observed
for both kinematic and thermodynamic variables emphasises the physical relevance
of the low-order approach with respect to the complex physical model.

8



POD-GALERKIN MODEL FOR COMPRESSIBLE FLOWS

u: 100 158 216 274 332

(a)
p: 20.0 23.6 27.2 30.9 34.5

(b)

Figure 7. Predicted (a) longitudinal velocity and (b) pressure fields after one buffeting
period via Navier-Stokes simulation (plain line) and the present ROM (dahsed lines).

5. Conclusion

In the present study, a low-order model was derived on the basis of the fully com-
pressible Navier-Stokes system. The POD-Galerkin approach was applied on a mod-
ified formulation of the high-order system by means of an inner product involving
both kinematic and thermodynamic state variable. A statistical criterion based
on the reconstruction of the dataset informational content is considered to deter-
mine the truncation level. This methodology lead to a simple surrogate model of
reduced number of degrees of freedom valid for the prediction of two-dimensional
transitional compressible flows around airfoils. The corresponding polynomial ODE
system which proved relevant predictive capacities for short term simulations was
recalibrated in order to minimize the prediction error with respect to a reference
high-order direct simulation, for longer computations. Global dynamics involving
the whole state variables were integrated in time and the physical reliability of
the present low-dimensional approach was examined on a transonic test-case char-
acterised by an unsteadiness induced by compressibility effects. The interaction
between the von Kármán instability and the lower frequency buffeting mode is effi-
ciently predicted by the ROM as the comparison with the Navier-Stokes simulation
results proves it.
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