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Abstract. We derive accurate, continuous response surfaces of two degree-of-freedom vortex-
induced vibrations (VIV) of flexibly mounted cylinders, for a wide range of transverse and in-line
natural frequencies, to identify the parametric sensitivity of the VIV response. The flow is assumed
to be two-dimensional and the Reynolds number equal to 1,000; the structure has the same low
damping for the in-line and transverse motions, while the transverse and in-line mass ratios are
equal. The VIV response is studied within a wide range of the transverse natural frequency around
the synchronization region. The variation of the in-line natural frequency is chosen to be larger
than for the transverse natural frequency, in order to study multi-modal response. The numerical
technique uses a stochastic generalized Polynomial Chaos representation coupled to a spectral
element based deterministic solver; hence the response is obtained as a continuous function of the
parameters.
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1. Introduction

In vortex-induced vibration (VIV) studies of flexibly-mounted bluff bodies in cross-
flow, often only the transverse motion of the body is considered, in order to simplify
the problem. This is supported by the fact that the amplitude of vibrations along the
in-line direction is generally much smaller than along the transverse direction, when
the in-line and transverse natural frequencies are equal. Recently, it was reported
that the effect of the in-line motion on the transverse motion can be significant when
the natural frequency ratio fnX

/fnY
departs from one. The presence of the in-line

X-motion can cause a significant change in the flow pattern behind the cylinder and
may enhance the transverse Y -motion.
The purpose of the present study is to systematically explore the effects of the cou-
pling of the two motions as function of the oscillator’s natural frequencies. Instead
of testing the response of the system for a finite set of values of the parameters, we
use a method that provides us with a continuous representation of the response as
a function of the variable parameters. We treat the natural frequencies of the os-
cillator as random quantities, in the sense that the frequencies are uncertain within
specified ranges. This is often the case in complex operating environments when
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the specific parameters of the system are known only approximately; hence, it is
important to find the response as well as its sensitivity to parametric changes. The
numerical technique we chose couples a stochastic generalized Polynomial Chaos
(gPC) representation to a spectral element based deterministic solver. The power
of the gPC representation resides in its ability to assign a given probability dis-
tribution to the parameters (the natural frequencies), and to propagate its effects
through the model to the numerical solution (the VIV responses). The gPC model
then provides fast and efficient approximations of the response for any set of natural
frequencies within the study interval. The main advantage of the method from a
numerical point of view is to significantly reduce the computational cost compared
to, for example, the Monte-Carlo method.

2. Numerical method

We first introduce the general framework of the stochastic collocation method. Then
we apply it to our fluid-structure interaction problem and briefly present the deter-
ministic solver on which it relies.

2.1. Stochastic collocation method

The generalized Polynomial Chaos (gPC) method is a non-statistical method used to
solve stochastic differential (SDE) and partial equations (SPDE) [21] and has been
used for numerous applications [5, 6, 7, 15, 25]. It is a spectral representation of a
random process in terms of orthogonal basis functions; the spatial and temporal evo-
lutions of the basis coefficients provide quantitative estimates of the modeled random
process solution. It is a means of representing second-order stochastic processes X(θ)
parametrically through a set of independent random variables {χj(θ)}N

j=1, N ∈ N,
through the events θ of a random event space Ω. The approach is very similar to
the variational finite elements formulation for deterministic mechanical problems [8].
The representation has the advantage of separating the stochastic variables (present
only in the polynomial basis) from the deterministic ones (modal coefficients):

X(θ) =
∞∑

k=0

XkΦk(χ(θ)). (1)

Here {Φj(χ(θ))} are orthogonal polynomials in terms of a zero-mean random vector
χ := {χj(θ)}N

j=1, satisfying the orthogonality relation 〈ΦiΦj〉 = 〈Φ2
i 〉δij.

For our application, we will only keep a finite set of random variables, i.e. {χj}N
j=1

with N < 3, and a M finite-term truncation of (1). Due to its tensor-structure
form, a complete basis has M = (N + P )!/N !P ! terms with P being the highest
polynomial order in the expansion. We will drop the θ-dependence of χ in the
following for notation simplicity. We have:

X(θ) =
M−1∑

k=0

XkΦk(χ). (2)

The efficiency of the representation depends on the choice of the appropriate para-
metric family of random variables. There exists in (1) a one-to-one correspondence
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between the type of the orthogonal polynomials {Φ} and the probabilistic law of
the random variables χ. More details are given in [19, 26].
After solving for the deterministic coefficients Xk, we can obtain a response surface
providing the sensitivity of the solution to the variability of the different parameters:
The probability density function (pdf) of the solution can be evaluated, while, due
to the orthogonality of the modes, the moments can be easily computed. The mean
solution is contained in the expansion term with zero-index. The second moment,
i.e., the covariance function is given by a linear combination of the modal fluctuations
[8].
The stochastic collocation method [22] of the gPC is used herein. It does not require
any substantial modifications to the existing deterministic solver, and consists of
projecting the stochastic solution onto the orthogonal basis spanning the random
space. The Xk random coefficients can be directly computed as follows:

∀k ∈ {0, . . . , M − 1} Xk =
< X(χ) Φk(χ) >

< Φ2
k(χ) >

. (3)

The inner product is based on the measure ρ(χ) of the random variables:

〈f(χ)g(χ)〉 =

∫

θ∈Ω

f(χ)g(χ)dP(θ) =

∫

Ω

f(χ)g(χ)ρ(χ)dχ, (4)

with ρ(χ) denoting the density of the law dP(θ) with respect to the Lebesgue mea-
sure dχ, and with integration taken over a suitable domain Ω, determined by the
range of χ. We recall that < Φk(χ) >= 0 for k > 0 and the denominator < Φ2

k(χ) >
can be tabulated prior to the projection. The evaluation of (3) is equivalent to com-
puting multi-dimensional integrals over the domain Ω. Different ways of dealing
with high-dimensional integrations can be considered, depending on the relative im-
portance of accuracy versus efficiency [10]. A convenient approximation through
numerical quadrature consists of replacing the integral by a finite weighted sum of
the integrant values taken at selected points. When the number of grid points in
multi-dimensions N becomes too large, one should not use a grid based on the full
tensor product of one-dimensional grids. An alternative is to use sparse quadratures
[17, 16], which require less quadrature points. For instance, the sparse quadrature
based on the Smolyak algorithm [20] has the advantage of remaining accurate with
a convergence rate, which depends only weakly on the number of dimensions.
In this study, we used numerical quadratures of Gauss– and Gauss-Lobatto–type
by full tensor products, because our number of random dimensions is small. We
underline the fact that the deterministic solver will compute X at those known
quadrature points, not at randomly selected locations. The number of quadrature
points nq depends on the regularity of the function to integrate. If it is well-known
that nq points are enough to integrate exactly a polynomial function of leading order
P = (2× nq − 1), but there is no way of knowing a priori how smooth the solution
X will be. The knowledge of the Φk’s is not sufficient to foresee the regularity of the
integrant. Therefore, we choose nq > P as our lower bound. The minimum number
of sampling of the solution (or minimum number of calls to the deterministic solver)
for the computation of the kth coefficient of (3), when the leading order of the Φk

polynomial is p, is:

Nq = (nq)
N with nq = p + 1. (5)
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This number becomes Nq = (P + 1)N for the estimation of the M th coefficient.
Therefore, the minimum number of samplings to compute all M coefficients Xk is
(P + 1)N .

2.2. Two degree-of-freedom structural model

The non-dimensional equations based on a reference length D (cylinder diameter)
and a reference velocity U (inflow velocity), are:

Ẍ + 2 ζX ωX(θ)
∂X

∂t
+ ω2

X(θ)X =
1

2

CDrag(t)

mX

(6)

Ÿ + 2 ζY ωY (θ)
∂Y

∂t
+ ω2

Y (θ)Y =
1

2

CLift(t)

mY

,

where ωX(θ) = 2πfnX
(θ) and ωY (θ) = 2πfnY

(θ) represent the natural frequencies of
the oscillator in the X– and Y –directions, respectively. The θ–dependency indicates
that the natural frequencies are considered uncertain within a given interval. The
forcing involves the non-dimensional time-dependent drag CDrag(t) and lift CLift(t)
coefficients, computed iteratively by the flow solver. The mass ratios of the structure
are: mX = mY = m = ρs/ρfD

2 = 2, (ρs is the structural linear density and ρf is
the fluid density) and the damping ratios are: ζX = ζY = ζ with ζ = 0 or ζ = 3%

depending on the case under consideration. Dimensional frequency values f̂n may
be computed using a proper scaling: f̂n = (fnU)/D. The reduced velocity is defined

as Un = U/(f̂nD).

The hydrodynamic loads in (7) are computed using a two-dimensional Navier-
Stokes direct numerical simulation (DNS) solver, the code N εκT αr , based on
the spectral/hp element method [9]. It was used previously for various VIV appli-
cations [13, 14, 12, 3]. A 2D rectangular grid of size [(−22D; 55D)× (−22D; 22D)]
in the (x, y)–plane, and made of 708 triangular elements [11] with Jacobi polyno-
mials of order p = 11, is used. This spatial resolution ensures the presence of (at
least) 4 computational nodes within the flow boundary layer developing at the wall
at Re = 1, 000. Our chosen non-dimensional temporal resolution requires at least
10, 000 time iterations per period of oscillation. Time-statistics are collected over
approximately 500 up to 1, 000 (when necessary) time units. In the following, we
focus on the representation of natural frequencies using uniform distributions, so
that only bounded variability ranges are considered, and no specific values are given
preference within each interval; Legendre polynomials are chosen to represent the
response. For stochastic processes that require more than one random dimensions to
be represented, multi-dimensional Legendre polynomials are used, built in a tensor-
like form.

Two generic cases are considered: In the first case (Case-A), we take fnX
= fnY

=
fn +σχ, where χ has a uniform distribution with zero mean and unit variance. The
parameters fn and σ are constant, representing the mean value and half the width
of variation of the natural frequency, respectively, chosen in such a way that fnX

and
fnY

are uniformly distributed in [0.1114; 0.3024]. Hence, only one uncertain param-
eter is considered, and fnX

/fnY
= 1 always, while the damping factor is ζ = 0; this

serves as our reference case. In the second case (Case-B), we take fnX
= fn1 + σ1χ1
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and fnY
= fn2 + σ2χ2, where χ1−2 are finite, independent, identically-distributed,

uniform random variables with zero mean and unit variance. The parameters fn1−2

and σ1−2 are constant and chosen such that fnX
and fnY

are uniformly distributed
in [0.1273; 0.3820] and [0.1273; 0.1910], respectively. The fnY

range is narrower than
in Case-A due to resolution requirements. This implies that the natural frequencies
can vary independently and that fnX

/fnY
∈ [0.5; 3]. A damping factor of ζ = 3% is

used.
The output of the DNS simulations can be treated as a random field and decomposed
onto the gPC basis (2). Herein, we focus mainly on the cylinder response statistics
and show the drag force distribution; other physical quantities of interest can be
evaluated similarly.
It is worth mentioning that gPC representations of complex and highly nonlinear
processes are sometimes inefficient in capturing the correct behavior of the system;
particularly for long-time integration of stochastic systems characterised by a limit
cycle oscillation response. For these cases, it was found that a spectral decomposition
of the solution in terms of global basis exhibits severe limitations [1, 24]. Herein,
we circumvent this problem by considering the statistical moments of the simulated
response and loads as functions of the uncertain parameters, instead of decomposing
the time-dependent turbulent pressure and velocity fields.

3. Results

Continuous gPC representation of the cylinder response and loads are constructed
using Legendre polynomials. To this end, the collocation procedure described in
section 2.1 evaluates the deterministic solution of the VIV problem at certain discrete
quadrature points in the parametric domain of interest. The deterministic DNS
solver is therefore called for each known sample point, corresponding to a specific
chosen pair of natural frequencies and time-statistics are collected for each case.

3.1. Case-A

Here, a multi-element gPC approach is employed along the lines introduced by Wan
[23]. This allows to decompose the parametric domain into smaller subdomains
and then use the gPC representation in each element. Local refinements in chosen
elements are possible when local gradients are large and better accuracy becomes
critical. Here, we use seven Gauss-Lobatto–quadrature points in each sub-element,
and up to P = 5th order Legendre polynomials, to reconstruct the response.
Figure (1) presents the time traces of the cylinder displacement for different natural
frequency pairs. Those signals are quite representative of the responses that can
be encountered in our computations, both for Case-A and Case-B. In the first case,
the motion eventually settles down to a regular, single pattern, after some initial
transient time; this reflects on the cylinder trajectory as well. In the second case, the
response alternates between regions with small and large amplitude, corresponding
to multiple trajectory patterns. The frequency of occurrence of these regions is
unpredictable and irregular. Those cases are the most difficult to simulate and
require a long-time integration. Finally, the last signal is quite irregular at the small
time-scale but exhibits some stationarity at the long time-scale. This diversity
implies that the temporal statistics collected for each case will not bear the same
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Figure 1. Time traces of the cylinder transverse Y -motion for different natural frequency
pairs (fnX , fnY ).

level of regularity and confidence. In other words, the temporal statistics might not
be fully converged. This will obviously affect the overall accuracy of some results of
our study.
Figure (2) presents the gPC response of the average 10% highest amplitude of the
X- and Y -motion against the reduced velocity; the symbols correspond to the DNS
deterministic samplings. The dotted lines delimit the computational sub-elements
used to obtain the response. The thin dashed curve with circles shows the one
degree-of-freedom (transverse motion only) response of the same system and is used
as reference. We emphasize that a maximum amplitude of 0.6D is what is usually
reported in the literature and commonly accepted for 2D numerical simulations of
one degree-of-freedom VIV [4]. We notice that allowing in-line motion enhances the
maximum transverse cylinder motion relative to transverse-response only, with a
33% increase of the highest amplitude from around 0.6D to 0.8D. Moreover, the
maximum transverse amplitude of the two degree-of-freedom case does not coincide
with the one of the one degree-of-freedom. We also notice that the gPC representa-
tion is more continuous and accurate for the Y - than for the X-motion, in particular
for the UnY

range ≈ [5; 7]. Interestingly, the distribution of the in-line amplitude
closely follows the same peaks in the transverse amplitude.

3.2. Case-B

Figures (3) present the response surface of the average 10% highest amplitude of
the Y -motion. This continuous surface is constructed with up to P = 6th order
Legendre polynomials. The collocation procedure described in section 2.1 uses eight
Gauss–quadrature points along each direction, which totals 64 DNS simulations.
The deterministic solver is called for each quadrature point on the map, correspond-
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Figure 2. Average highest 10% X- and Y -motion amplitude responses vs. reduced velocity.
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Figure 3. Average highest 10% Y -motion amplitude response. The white dots indicate the
location of the sampling/quadrature points. (a): response surface vs. natural frequencies;
(b): response surface vs. reduced velocity and frequency ratio.
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Figure 4. Average highest 10% X-motion amplitude response. The white dots indicate the
location of the sampling/quadrature points. (a): response surface vs. natural frequencies;
(b): response surface vs. reduced velocity and frequency ratio.

ing to a specific chosen set of parameters, represented by white dots in the figure.
The negative values are due to end-effects and only affect very small regions of the
domain. A measure of the error is obtained by comparing the exact DNS solution
and the gPC reconstructed solution at the 64 sampling points. In this case, the
L2 norm of the error is within a 12% accuracy. The first finding is the increase of
the transverse amplitude response compared to the case with no X-motion. Indeed,
the maximum amplitude reaches up to 90% of the cylinder diameter D for certain
combinations of the natural frequencies. Nevertheless, this result is still below the
experimental amplitude results when the flow is three-dimensional [2].

Figure (4-b) shows the same results presented differently, in the light of the experi-
mental work of Dahl et al. [2]. The iso-contours are plotted vs. the reduced velocity
(based on fnY

) and the natural frequency ratio fnX
/fnY

. Despite the somewhat
reduced parametric ranges, it is clear that increasing the in-line to transverse fre-
quency ratio causes a shift in the peak amplitude response to increasingly higher
reduced velocities. This is in agreement with recent 3D-flow experimental results
[2]. Moreover, we notice that at a frequency ratio between [1.5; 2.0] two distinct re-
sponse peaks appear; one centered around UnY

≈ 5 (and somewhat incomplete due
to the range limitation), and one centered around UnY

≈ 6.25. This is in qualitative
agreement with earlier experiments [18, 2]. Interestingly, there exists another peak
centered around UnY

≈ 7.35 for higher in-line to transverse frequency ratios.

Figures (4) and (5) show the average 10% highest amplitudes of the X-motion and
the drag coefficient distribution, respectively. The gPC representation of integrated
quantities, such as the drag force on the cylinder, is very accurate, with the L2 norm
of the error exhibiting a 5% accuracy. As seen on the plots, there exists a strong
relation between the drag forces and the X-motion; the mean drag force consistently
increases for increasing frequency fnX

.
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Figure 5. Drag coefficient response vs. natural frequencies. The white dots indicate the
location of the sampling/quadrature points. (a): time-averaged drag coefficient CDrag;
(b): rms drag coefficient CDragrms

.

4. Conclusions

This is a first application of recently developed numerical stochastic collocation
techniques to obtain accurate, continuous response surfaces in two degree-of-freedom
vortex-induced vibrations (VIV) of flexibly mounted cylinders; and to capture the
sensitivity of the response to the change in both the transverse and in-line natural
frequencies of the structure.
The system was studied for a wide range of transverse natural frequency around the
synchronization region using a stochastic generalized Polynomial Chaos representa-
tion coupled to a DNS flow-structure interaction deterministic solver. Although the
results are obtained assuming two-dimensional flow, the parametric dependence of
the response is qualitatively close to observed results in experiments where the flow
is three-dimensional: the in-line motion causes the maximum transverse response to
increase by about 33%, but the peak responses occur at different reduced velocities
and at multiple points. These results will guide us to explore a computationally
more costly three-dimensional study of the same phenomenon.
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