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Abstract. The flow past a rotating circular cylinder, placed in a uniform stream, is investigated
by means of 2D and 3D direct numerical simulations, using the finite-volume version of the code
ICARE/IMFT. The flow transition is studied for Reynolds numbers from 40 to 500, and for rotation
rates α (ratio of the angular and the free-stream velocities) up to 6. For a fixed Reynolds number,
different flow patterns are observed as α increases: Von-Kármán vortex shedding for low rotation
rates, suppression of the vortex shedding at higher α, appearing of a second mode of instability
for a high interval of α where only counter clockwise vortices are shedd, and steady state flow for
very high rotation speeds where the rotation effects keep the vortex structure near the wall and
inhibit detachment. Three dimensional computations are carried out showing that the secondary
instability is attenuated under the rotation effect. The linear and non-linear growth of the 3D flow
transition are quantified using the Ginzburg-Landau global oscillator model. The analysis of the
coherent structures under the rotation effect is performed by the proper orthogonal decomposition,
as well the pattern reconstruction using the first POD modes.
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1. Introduction

The vortex dynamics of the flow around a fixed circular cylinder have been the
objective of a considerable number of investigations. Comparatively, less work has
been performed in the case of a rotating cylinder. This paper aims to study the
transition in the wake past a circular cylinder under the rotation effect (fig. 1.).
The flow depends mainly on two parameters: The Reynolds number Re = U∞D

ν
and

the rotation rate α = Dω
2U∞

, where U
∞

is the free-stream velocity, D the cylinder
diameter, ν the kinematic viscosity and ω the angular velocity of the cylinder.

Earliest experiments on the flow past a circular rotating cylinder where performed
by Reid [18], Prandtl [17] and Thom [21, 22]. More recently, the early phase of the
establishment of the flow around a cylinder started impulsiveley into rotation and
translation was investigated experimentally by Coutanceau and Ménard [9], and
numerically by Badr and Dennis [3], for moderate Reynolds numbers (Re ≤ 1000).
The same study was performed both theoratically and experimentally by Badr et
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Figure 1. shematic of the physical problem

al. [2], in higher Reynolds number range 103 ≤ Re ≤ 104. The same initial stage
of the vortex shedding was studied numerically by Chang and Chern [7], for 103 ≤
Re ≤ 106 end 0 ≤ α ≤ 2, and later by Nair et al. [14] who provided detailed results
for Re = 3800 and α = 2.

Concerning the estabilished state, a number of investigation were performed at
low and moderate Reynolds numbers, showing the suppression of the Von-Kármán
vortex shedding when the rotation rate increases. Stojković et al.[19] were the first
to notice the existence of a second shedding mode for 4.8 ≤ α ≤ 5.15 at Re = 100.
The two-dimensional numerical study of Stojković et al. [20] confirmed the existence
of this second mode in the Reynolds number range 60 ≤ Re ≤ 200. Different flow
regimes as rotation speed increases were also investigated numerically by Mittal and
Kumar [13], at Re = 200, 0 ≤ α ≤ 5. Later, Cliffe and Tavener [8] studied the
effect of the rotation of a cylinder on the critical Reynolds and Strouhal numbers at
the hopf bifurcation point. They noticed the restabilization of steady flows at large
blockage ratios as the Reynolds number is increased even for non-rotating cylinders.

The different flow regimes are studied in this paper for the flow around a rotating
circular cylinder by means of 2D and 3D computations. The outlines of the finite-
volume formulation of the ICARE code of the IMFT, Braza et al. [6], Persillon
and Braza [16] are presented in §2. Detailed two-dimensional analysis for the flow
transition is performed in §3. for Reynolds numbers from 40 to 500, and for rotation
rates up to 6. §4. analyses the onset of the three-dimensional transition under the
rotation effect. The ampilification of the secondary instability is studied by means
of the global oscillator model. The study of the coherent structures motion is next
carried out by means of the proper orthogonal decomposition as well the pattern
reconstruction in §5.

2. Principles of numerical method

The 2D and 3D simulations were carried out using the code ICARE of the IMFT,
in its finite-volume version. The governing equations are the continuity and the
Navier-Stokes equations for an incompressible fluid, written in general curviliner
coordinates in the (x, y) plane, while the z− component (in the spanwise direction)
is in cartesian coordinates. The numerical method is based on a pressure-velocity
formulation using a predictor-corrector pressure sheme of the same kind as the one
reported by Amsden and Harlow [1], extended in the case of an implicit formulation
by Braza et al. [6]. The temporal discretistation is done adopting the Peaceman
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Figure 2. Computational domain Figure 3. magnification of the grid
around the cylinder

Nx Ny Nw Xu Xd Y u

Re ≤ 200 250 100 43 8.95 20.51 7.42
Re = 200; 4.35 < α < 4.85 352 112 43 9.40 42.37 8.50
Re = 300 303 120 47 11.50 23.70 10.02
Re = 500 360 146 61 11.54 23.41 10.21

Table 1. Characteristics of the different computational domains; Nx and Ny: number
of points in the x- and y-direction respectively; 2Nw: number of points on the cylinder
surface; Xu and Xd: upstream and downstream length; 2Y u: vertical width of the domain;
see also figure 2

and Rachford [15] scheme in an Alternating Direction Implicit formulation. The
method is second-order accurate in time and space. The staggered grids by Harlow
and Welch [10] are employed for the velocity and pressure variables.

H-type grids are used because this kind of grid offers the possibility to intro-
duce more physical boundary conditions on the external boundaries and it avoids
branch-cut lines. A zoom of the grid around the obstacle is shown in figure 3. The
characteristics of the different grids used are shown on table 1. The grid used for
the 3D simulation is (250 × 100 × 80) where the same grid is repeated in all dz
sections. The spanwise length of the computational domain is 12D where D repre-
sents the cylinder diameter, A careful study of the numerical parameters and of the
dimensions of the computational domain had been conducted for the final choice, in
respect of the grid and the spanwise distance independence of the results, as well as
for the 2D study.

The boundary conditions are those specified in Persillon and Braza [16]. Con-
cerning the spanwise free edges of the computational domain, periodic boundary
conditions are applied.

3. Successive stages in the two-dimensional transition

The flow transition is analysed for Reynolds numbers 40 to 500 for different rotation
rate numbers, α varying from 0 to 6. The changes in the flow pattern are studied
by means of the averaged and instantaneous streamlines, of the global parameters
and of the vorticity fields.
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Figure 4. streamlines for different rotation rate values, Re = 40

3.1. Steady state flow at Re = 40

For Re < 48, the flow remains steady for all the rotation rates investigated. In the
fixed cylinder case, the flow shows two symmetric vortices attached to the cylinder.
The rotation causes a loss of symmetry as shown in figure 4; stagnation points are
attained in the upper part of the cylinder. As a consequence of the Magnus effect,
the lift coefficient increases and the drag coefficient decreases.

Detailed flow computations were carried out for higher Reynolds numbers up
to 500; similar flow regimes appear as α increases. In the following section, The
Re = 300 case is detailed.

3.2. Successive stages of 2D transition in the flow around a rotat-

ing cylinder at Re = 300

Different flow patterns

For low rotation rates, α < 2.5, the flow is unsteady, qualitatively similar to the
fixed cylinder case, where the Von Kármán vortex shedding is observed, asymmetric
towards the upper side of the cylinder due to the rotation sense. For higher rotation
rates, the vortex shedding is suppressed; the flow remains steady until a rotation
rate of 3.9 where a second mode of instability (mode II) appears for 3.9 < α < 4.8.
In this interval, only counter-clockwise vortices are shedd from the upper side of
the cylinder in a periodic motion. This second mode of instability is due to the
increasing of the rotation rate and of the velocity gradient between the two sides
of the cylinder, in association with the strong viscous effect near the wall. Thus
the steamlines that are closed around the cylinder start to have an oval-like form.
The fluid flow forces this structure to be more elongated until detachement. Mode
II disappears for higher rotation rates where the rotation effects keep the vortex
structure near the wall and inhibit detachement. Figure 5 shows the different flow
configurations for Re = 300 as α increases.

Global parameters

Figure 6 shows the evolution of the Strouhal number St = fD

U∞

as a function of α. For
low rotation rates in mode I, St is practically constant, and it shows a reduction as
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Figure 5. Iso-vorticity contours for different states at Re = 300
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Figure 6. Stouhal number St versus rota-
tion rate α at Re = 300

Figure 7. phase diagram (CD, CL) for dif-
ferent values of α at Re = 300

a function of α before the first bifurcation. St in mode II also decreases in the range
of 3.9 ≤ α ≤ 4.8. Therefore, the effects of increasing rotation have the tendency to
diminish the instability mode and even to make it vanish.

Concerning the lift and the drag coefficients, figure 7 represents the phase dia-
gram (CD, CL). For α = 0, the phase plot is like a figure of 8, because in each cycle,
two vortices of equal strenght are released from the upper and the lower side of the
cylinder, and the frequency of the drag variation is twice that of the variation of lift.
The rotation introduces asymmetry in the strenght and the location of the positive
and negative vortices. The phase plots form closed lobes in both mode I and mode
II, corresponding to a periodic flow. The size of each lobe shows the amplitude of
fluctuation of the global coefficients. It is shown that the amplitude of the drag
coefficient increases as α increases. In the mode II, large amplitudes for CD and CL

are shown; in this case, the periodic flow is more complex than the mode I case.
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Figure 9. St as a function of α for differ-
ent Re

3.3. Influence of the Reynolds number

Similar flow regimes appear as a function of the Reynolds number. The Von-Kármán
vortex shedding is observed for low rotation rates α < αL1, αL1 increasing as Re
increases. The flow is steady for αL1 < α < αL2. Mode II of instability appears in
the range αL2 < α < αL3. αL2 and αL3 decrease as the Reynolds number increases
where viscous effects are reduded, and the flow approaches the potentiel theory flow
for lower rotation rates. The critical α values are presented in figure 8 for different
Reynolds numbers in comparison with previous results of Mittal and Kumar [13] and
Stojković et al. ([20],[19]). This figure shows also that the critical Reynolds number
of appearance of the first flow unsteadiness increases with respect to α. Figure 9
shows the evolution of the Strouhal number for Re = 100, 200, 300 and 500

4. Three-dimensional transition

This section analyses the onset of the 3D transition phenomena under the rotation
effect concerning the coherent structures in the wake. Without rotation, at Reynolds
number 200 the three-dimensionality starts from an amplification of the w compo-
nent versus time in the near wake. This displays a linear amplification rate following
a non-linear state that leads finally to a saturation state as reported by Persillon
and Braza [16]. The w amplification announces the development of a secondary
instability concerning the 3D modification of the von Kármán mode that starts to
display a regular spanwise undulation (mode A). The spanwise undulation is shown
in figure 10. The same kind of flow where wall rotation is applied (α = 1.5) displays
however a total damping of the amplification mode( figure 11). Therefore the rota-
tion attenuates the secondary instability and increases the critical Reynolds number
of appearance of this instability. Indeed, at higher Reynolds number, Re = 300, the
3D undultaion is clearly shown for α=0.5 (figure 14).

The amplification of the above instability can be studied by means of the Landau
global oscillator model, Mathis et al.[12].

∂A

∂t
= σrA

︸︷︷︸

linear growth

− lr|A
3|

︸ ︷︷ ︸

non linear

+ µr

∂2A

∂z2

︸ ︷︷ ︸

3D−undulation

(1)

The real part of the coefficients σr and lr can be evaluated by the present DNS study,
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Figure 10. Iso-vorticity surfaces of the 3D
fields, Re = 200, α = 0

Figure 11. vanishing of the 3D undulation
with the rotation,Re = 200, α = 1.5

that provides the amplitude variation as a function of period. σr can be evaluated
by the log(A) variation as a function of time. For Re = 200, α = 0, σr = 0.013
and for Re = 300, α = 0.5, σr = 0.034. The σr evaluation allows furthermore the
assesment of the non-linear growth coefficient lr:

lr = σr ×
A

|A3|
(2)

The sign of lr coefficient indicates the subcritical or supercritical nature of the
present instability. lr can be evaluated near the saturation threshold. The values
3.055 and 2.314 are found for Re = 200 and 300 respectively, therefore the nature
of the instability is subcritical (Handerson and Barkley [11]) It has been found that
the rotation changes the instability nature comparing to the non-rotated case, where
at Re = 300 the mode is supercritical, Bouhadji and Braza [5]. The evaluation of
σr and lr coefficients allows assessment of the real part of the Ginzburg Landau
coefficient, µr in respect to the 3D growth. In the saturation stage, the term ∂A

∂t

vanishes. Therefore, µr = (σr − lr.A
2)/2. This yields an assessment of dimensionless

mur values: 4.43 × 10−3 and 7.26 × 10−3 for Re = 200 and 300 respectively. The
above discussion provides the amplification characteristics of the global instability
by means of the DNS approach and by simpler, global osillator model.

In the following section this paper aims at analysing the energy of the organised
modes in space and time and to provide the pattern reconstruction of the coherent
structures.

5. Analysis of the organised modes by the Proper Orthogonal Decom-

position

The analysis of the 2D and 3D organised modes under the rotation effect has been
performed by the proper orthogonal decomposition, using the snapshot method,
Berkooz et al. [4]. Figures 12 compares the energy of the first 20 P.O.D. modes
for the different values of α for Re = 200 in the 2D study A rapid energy decay
is attained for both modes of instability. However, higher number of modes were
needed to reproduce the flow pattern in the mode II, but a number of 20 modes are
sufficient at this Reynolds number. The same study was performed for the 3D flow;
figure 13 shows Compares the energy of the first 20 modes of the 2D and the 3D
cases. It can be seen that the 3D energy decay is less abrupt than the 2D case. This
displays a more chaotic character that is captured by the 3D DNS. While 7 modes
seems to be sufficient de reconstruct the 2D flow field in the mode I, higher number
of modes, of order of 20, is needed in the 3D case as shown in figure 14.
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Figure 12. energy of the first 20 POD
modes for different rotation rates, Re =
200

Figure 13. slope comparison of the energy
contribution of the first POD modes in 2D
and 3D simulations, Re = 200, α = 0

a)instantaneous field

b) reconstruction with the first 3 modes

e) 19 modes

Figure 14. reconstructions of the instantaneous field with the first eigenmodes, Re = 300,
α = 0.5
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6. Conclusion

The present study analyses the successive transition steps in the flow around rotat-
ing circular cylinder for Reynolds numbers from 40 to 500, as the rotation rate α
increases from 0 to 6, by means of direct numerical simulations. For low Reynolds
numbers (less than 48), the flow remains steady Increasing α causes a loss of sym-
metry, an increasing of the lift coefficient, and a decreasing of the drag coefficient
due to the Magnus effect. Detailed flow computations have been carried out for
higher Reynolds numbers (up to 500). Similar flow regimes appear as a function of
Re as α increases. The Von-Kármán vortex shedding, asymmetric due to the rota-
tion, disappears at a critical value of rotation rate, but a second mode of instability
appears for a higher range of α where only counter clockwise vortices are detached.
For higher rotation rates, the flow is steady again because the rotation effects keep
the vortex structure near the wall and inhibit detachment. Three-dimensional com-
putations have been carried out in order to analyse the onset of the 3D transition
phenomena under the rotation effect, concerning the coherent structures in the wake.
It is shown that the rotation attenuates the secondary instability and increases the
critical Reynolds number of appearance of this instability. The amplification charac-
teristics of the global instability are analysed by means of the DNS approach and by
simpler, global osillator model. The analysis of the energy of the organised modes
is carried out by proper orthogonal decomposition. For the 2D case, mode I recon-
structions are satisfactory with an order of 9 modes, concerning the mode II, more
modes were needed; an order of the 20 modes is sufficient. In the 3D case, about 15
modes are needed to capture the secondary instability. This work has a significant
implications for the flow control strategies using rotating cylinders. Steady flows
may occur for some intervals of rotation rates.
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