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Abstract. This work focuses on the wake transition of the flow around two circular cylinders
when placed in staggered arrangements with a fixed streamwise separation of 5D and varying the
cross stream separation from 0D to 3D. The wake transition is compared to that of a single isolated
cylinder. Linear stability analysis, utilising Floquet theory, and direct numerical simulations, using
the spectral/hp element method, are carried out. It is found that besides modes A and B, mode
C can also appear in the wake transition, depending on the relative positioning of the cylinders.
The structure of mode C is analysed and the non-linear character of the bifurcation for this mode
is investigated.
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1. Introduction

The flow around circular cylinders has been extensively studied due to its practical
importance in engineering and scientific relevance in fluid mechanics. In the last two
decades, much effort has been focused on the study of the three-dimensional transi-
tion that takes place in the von Kármán wake that appears in the flow downstream of
a single cylinder. This line of research in its contemporary form was instigated by the
seminal work of Williamson [15], in which the two fundamental three-dimensional
instabilities that occur in the wake transition, modes A and B, were first identi-
fied. A great leap forward occurred with the work of Barkley and Henderson [2],
who performed high accuracy Floquet stability analyses of two-dimensional time
periodic base flows, precisely identifying the critical Reynolds numbers and also
characterising each of the modes that take part in the wake transition. The non-
linear characterisation of the modes was later investigated in a number of works
using direct numerical simulations, for example [6] and [5]. When some degree of
asymmetry is introduced in the configuration, a period-doubling mode, which is
commonly called mode C, is also found in the wake transition. As far as we are
aware, the first evidence of this mode, appeared in the computations and exper-
iments of Zhang et al. [16] when a tiny trip wire was placed close to a circular
cylinder. More recently the same mode was identified in the flow around bluff rings
[11, 12, 13].
Another important aspect of the flow around bluff bodies such as circular cylinders
is that the flow field and fluid loads change dramatically when compared to the
flow around an isolated body if two or more bodies are placed in close proximity
in the fluid stream. Here we deal with the case of circular cylinders in staggered

1



B. CARMO ET AL.

(a) Ly = 1.0 (b) Ly = 2.0

Figure 1: Instantaneous vorticity contours, flow around staggered arrangements, Re = 200,
two-dimensional simulations. Light contours represent regions of negative vorticity and
dark contours represent regions of positive vorticity.

arrangements, as illustrated in figure 1. Sumner et al. [14] put forward a taxonomy
for the flow regimes observed in their experiments with such arrangements. This
work was extended by Akbari and Price [1], who reproduced the flow regimes using
computational simulations and scrutinised the physical features observed in each.
As far as we are aware, no computational work addressing the three-dimensional
aspects of the flow around staggered arrangements of circular cylinders has yet been
published. This paper focus on the changes that occur in the transition in the wake
when the flow around staggered arrangements is compared to the flow around a
single cylinder. By means of linear stability analysis of two-dimensional periodic
base flows and also fully three-dimensional simulations, the instabilities that arise
at the beginning of the transition are characterised.

2. Overview

The methodology adopted in this investigation can be divided into three distinct
parts: two-dimensional simulations, Floquet stability analysis and three-dimensional
simulations. In the next three subsections, an overview of the mathematical formu-
lation and computational implementation of each of these parts is provided.

2.1. Two-dimensional base flow calculation

We consider a two-dimensional incompressible viscous flow, which is governed by
the Navier-Stokes equations. These equations can be written in non-dimensional
form using the cylinder diameter as the reference length and the free-stream flow
speed U∞ as the reference speed:

∂u

∂t
= −(u.∇)u−∇p +

1

Re
∇2u, (1)

∇.u = 0, (2)

where u ≡ (u, v, w) is the velocity field, t is the time, p is the static pressure and
Re is the Reynolds number. The pressure is assumed to be scaled by the constant
density ρ. These equations were discretized following the Spectral/hp method as
described in [9]. To generate the base flows, equations (1) and (2) were solved in
two dimensions, using a stiffly stable splitting scheme, following [8].
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2.2. Floquet stability analysis

We considered periodic two-dimensional base flows U(x, y, t), with period T , and
checked their stability with respect to an infinitesimal three-dimensional perturba-
tion u′(x, y, z, t). The equations that govern the perturbation evolution to leading
order are the linearized Navier-Stokes equations:

∂u′

∂t
= −(U.∇)u′ − (u′.∇)U−∇p′ +

1

Re
∇2u′, (3)

∇.u′ = 0, (4)

where p′(x, y, z, t) is the pressure perturbation. The velocity boundary conditions
that were imposed on this system are u′ = 0 on boundaries where Dirichlet conditions
are specified for the base flow, and ∂u′/∂n = 0 on boundaries where Neumann
conditions are specified for the base flow.
The right hand side of (3), subjected to the incompressibility constraint of equation
(4), can be represented by a linear operator L(u′), which is T -periodic because it
depends on the base flow U(x, y, t), which is T -periodic. Therefore, the stability
of the system can be investigated using Floquet analysis [2]. The solutions of the
system can be decomposed into a sum of solutions of the form ũ(x, y, z, t)eσt, where
ũ(x, y, z, t), which are called Floquet modes, are T -periodic solutions. The complex
exponents σ are the Floquet exponents, and the sign of their real parts determines
the stability of the system. However, in Floquet type problems it is more usual to
consider the Floquet multiplier µ ≡ eσT instead of the Floquet exponent. If the
Floquet multiplier is located inside the unit circle (|µ| < 1), then the solution will
decay exponentially with time, and if the multiplier is located outside the unit circle
(|µ| > 1), the solution will grow exponentially with time, and the system is therefore
unstable.
If we consider a system that is homogeneous in the spanwise direction z, a further
simplification can be made. A perturbation of the velocity field can be expressed in
terms of the Fourier integral:

u′(x, y, z, t) =

∫ ∞

−∞
û(x, y, β, t)eiβzdβ (5)

and similarly for p′. Since equations (3) and (4) are linear, modes with different β
do not couple. As the velocity components (û, v̂, ŵ) and pressure p̂ depend only on
x, y and t, the three-dimensional stability problem can be reduced to a series of two-
dimensional stability problems, each with a different value of β. Consequently, the
stability of such two-dimensional incompressible periodic flows in respect to three-
dimensional perturbations can be analysed by computing the Floquet multipliers
and corresponding modes as a function of Re and β.

2.3. Three-dimensional simulations and non-linear characterisation
of the transition

The three-dimensional computational calculations utilised the same framework out-
lined in section 2.1. However, the spanwise direction was treated using a Fourier
expansion discretization [7]. The three-dimensional simulation results enabled a
non-linear analysis of the transitions to be conducted. The Landau equation has of-
ten been successfully used in hydrodynamics as a low dimensional model to describe
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the non-linear behaviour of transitions close to their respective critical points see
for example [12, 5]. Here, the Landau equation is written up to third order, using
the same notation as in [12]:

dA

dt
= (σ + iω) A− l (1 + ic) |A|2A + . . . , (6)

where A(t) is the complex amplitude of the perturbation mode being considered.
The term (σ + iω) in (6) is the eigenvalue obtained from the linear stability analysis,
and in the present case is the Floquet exponent. The parameter l is the real part
of the third order coefficient and the classification of the transition depends directly
on its sign. If l > 0, the transition is supercritical. On the other hand, if l < 0, the
transition is said to be subcritical. Lastly, c is called the Landau constant and it
modifies the oscillation frequency at saturation. The value of the amplitude A was
calculated as in [5].

3. Numerical simulations

Figure 1 shows the geometry investigated in this research. The two cylinders have
the same diameter D. For all cases, the streamwise distance between the centres
of the cylinders, Lx, is 5.0D. The transversal distances tested, Ly, were 0.0D,
0.5D, 1.0D, 2.0D, 2.5D and 3.0D. Calculations were also carried out for the single
cylinder case, which served as a benchmark for comparison with the two-cylinder
cases. The Reynolds numbers simulated were 200, 250, 300 and 350, covering the
wake transition range for the flow around a single cylinder.
8th-degree polynomials expansions were used as basis functions for the spatial dis-
cretization, and the integration in time was second-order accurate. The value of
the non-dimensional time-step varied from 0.006 to 0.004, depending only on Re.
Uniform stream velocity boundary conditions (u = 1, v = 0) were imposed at the
upstream boundary and upper and lower surfaces of the computational domain. At
the cylinder walls, a no-slip condition (u = 0, v = 0) was imposed. Finally, at the
downstream border, Newmann boundary conditions (∂u/∂n = 0, ∂v/∂n = 0) were
applied. For the three-dimensional simulations, periodic boundary conditions were
set on the boundary planes located at the extreme values of z. We used 8 Fourier
modes (16 planes) in the z direction.
For all stability calculations, the calculations spanned wave numbers (β) from 0.0 to
15.0. The calculations were carried out until the residual of the biggest eigenvalue
reached a value less than 10−5.
In the remainder of this paper, all the distances will be given in diameters.

4. Results

4.1. Floquet stability calculations

Single cylinder

The values of the Floquet multiplier, µ, for the stability calculations of the flow
around a single cylinder are shown in figure 2, and they compare well with those
presented in [2]. Two different unstable modes, called modes A and B, are present
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Figure 2: Floquet multiplier µ as a function of the spanwise wavenumber β for various
Re. Flow around a single cylinder.

(a) Mode A – Re = 200, β = 1.571 (b) Mode B – Re = 300, β = 7.500 (c) Mode C – Re = 300, β = 1.571

Figure 3: x-vorticity of the unstable eigenvector. (a) and (b) - flow around a single
cylinder, data extracted from line x = 2.0; (c) - flow around a staggered arrangement with
Ly = 2.0, data extracted from line x = 7.0. Light regions correspond to negative and dark
to positive streamwise vorticity of the eigenvector. Time is non-dimensionalized using the
shedding period.

in the Re range considered. Mode A, which corresponds to the peaks of lowest β in
each of the curves exposed in figure 2, is the first to appear in terms of Re, and is
already unstable for Re = 200. For this mode, the wavelength of maximum growth
rate is around 4.0D. Mode B corresponds to the peak of higher β in the curves
shown in the graph, having a wavelength of maximum growth rate of about 0.8D,
and, among the cases calculated, it is only unstable for Re = 300 and Re = 350.
An important difference between modes A and B is their spatio-temporal symmetries
[2, 4]. In figures 3a and 3b streamwise vorticity contours evaluated in time on a
vertical line 2D downstream of the cylinder are presented. For mode A, the vorticity
has different sign either side of the wake centreline, for mode B, the vorticity has
the same sign throughout the cycle.

Staggered Arrangements

Figure 1 shows examples of instantaneous vorticity contours of the two-dimensional
base flows for staggered arrangements. For low cross stream separations, Ly 6 1.0,
a single wide wake was observed downstream of the arrangement, while for higher
separations, Ly > 2.0, two distinct wakes were observed. For all cases with two
cylinders two shedding periods T were considered in the stability calculations, in
order to take into account the vortex interaction that happens in the far wake,
which was found to have 2T -periodicity.
For Ly = 0.0 and 0.5, the shape of the curves µ versus β were very similar to the
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(a) Ly = 0.0 (b) Ly = 0.5

(c) Ly = 1.0 (d) Ly = 2.0

(e) Ly = 2.5 (f) Ly = 3.0

Figure 4: Floquet multiplier µ as a function of the spanwise wavenumber β for various
Re. Staggered arrangements.

single cylinder case, as can be seen in figures 4a and 4b. The two peaks, one for
mode A and one for mode B, are clearly evident.

In order to examine the structure of the modes in greater detail, figure 5 shows
streamwise vorticity contours of the unstable eigenvectors. Figure 5a shows struc-
tures characteristics of mode A. Of note is that the instability first develops in the
near wake of the upstream cylinder, but then grows stronger when it reaches the
downstream cylinder. Also of note is the higher energy in the region of vortex inter-
action far downstream. It seems that the vortex merging that occurs in this region
helps to reinforce mode A structures. The results are different for mode B. In fig-
ure 5b, we see that the instability first develops in the near wake of the upstream
cylinder, as in the mode A case. However, the streamwise vortical structures do not
seem to gain significant strength when they impinge upon the downstream cylin-
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(a) β = 1.571 (b) β = 7.500

Figure 5: x-vorticity of eigenvectors, flow around two cylinders with Ly = 0.0, Re = 300.
Dark contours correspond to positive x-vorticity and light contours to negative x-vorticity.

Table 1: Critical Re for modes A (ReA), B (ReB) and C (ReC) and mode C bifurcation
type. The Reynolds numbers for which the wake first becomes 3-D in each configuration
are written in bold face.

Ly ReA ReB ReC Mode C bifurcation type
1.0D 183 N/A 191 subcritical
2.0D 190 N/A 178 supercritical
2.5D 192 264 198 supercritical
3.0D 193 263 209 subcritical

Single cylinder [2] 188.5 259 – –

der. Also, no mode B structures were observed in the vortex interaction region far
downstream.
For Ly = 1.0, the transition deviated from that observed for the flow around a single
cylinder. A peak of intermediate wave number dominates, as can be seen in figure
4c. This corresponds to the asymmetric period-doubling mode C, which will be
described and analysed in more detail in section 4.2. The peak relating to mode B
is only visible for Re = 350, nevertheless it was verified that this mode is already
unstable for Re = 300, but that the correspondent Floquet multiplier is smaller than
that relating to mode C. Table 1 shows that the critical Reynolds number for which
mode A became unstable was lower than for a single cylinder. Mode C became
unstable for ReC = 191 and the instability had a wavelength LzC = 1.55.
For configurations in which two distinct wakes could be observed (2.0 6 Ly 6 3.0),
mode C was also detected. Figures 4d, 4e and 4f exhibit three distinct peaks, and the
peak relating to mode C appears in a region of intermediate wave numbers between
the peaks associated with modes A and B. For the three cases, mode A bifurcates
at a slightly higher Re than it does in the single cylinder case and the same trend
is observed for the mode B bifurcation (see table 1). However, as shown in table
1, as Ly increases mode C becomes unstable at a progressively increasing Re. This
behaviour is not surprising, given that the larger the distance between the cylinders,
the closer the flow is to the single cylinder case, for which no mode C instability is
observed.

4.2. Mode C

In this section, the intermediate wave number mode that appears in the wake tran-
sition for Ly > 1.0 is examined. This mode is in fact a mode C instability [16, 11],
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(a) Mode A, Lz = 4.000 (b) Mode B, Lz = 0.838 (c) Mode C, Lz = 1.571

Figure 6: Three-dimensional structures of the instability modes, configuration Ly = 2.0,
Re = 300. The represented flow fields are linear combinations of the base-flow and the
unstable Floquet mode. Translucent green and yellow surfaces are iso-surfaces of negative
and positive ωz, respectively. Solid blue and red surfaces are iso-surfaces of negative and
positive ωx respectively. Flow is from right to left.

as will be shown later, so this designation will be used from now on. A significant
difference between this mode and modes A and B is that mode C appears in the
near wake of the downstream cylinder, while modes A and B originate in the near
wake of the upstream cylinder, as can be seen in figure 6. When considering only
one shedding period T in the instability calculations, the results gave real negative
Floquet multipliers. Hence this is a period-doubling mode, just like the mode C
instability reported by [11].
Figure 3c shows the time history of the x-vorticity contours of the eigenvector of
mode C on a vertical line 2D aft of the downstream cylinder (7D aft of the upstream
cylinder). The first important aspect to notice is that this mode is not symmetric
in relation to the wake centreline (in figure 3c, the wake centreline is y = 2.0). A
second aspect of note is that this mode has a period of 2T in contrast with modes
A and B, which are T -periodic.
Figure 6 shows plots of vorticity iso-surfaces of the base flow combined with the
unstable Floquet mode for modes A, B and C. The three-dimensional structures
of modes A and B are very similar to those observed in the flow around a single
cylinder [5]. For mode A, the streamwise vorticity is stronger in the primary vortex
cores, whereas for mode B it is stronger in the braid shear layers. Apart from the
different wavelength and its period-doubling nature, mode C presents a structure
similar to mode B, in the sense that it is stronger in the braid shear layers, although
bubbles of non-negligible stream wise vorticity are also observed in the primary
vortex cores. The asymmetrical nature of mode C is also clear in the figure, as the
stronger streamwise vorticity is observed in the side of the wake closer to the vortex
street formed from the upstream cylinder.
As previously mentioned, the period-doubling mode C was also identified by [11], in
stability calculations of the flow around bluff rings with aspect ratio (ratio between
the ring diameter and the cross section diameter) greater than 4.0. In this work
they found a maximum growth rate for mode C for spanwise wavelengths between
1.6D and 1.7D, which agrees well with the results of the present investigation.
Furthermore, striking similarities between the three-dimensional structure of mode
C are found when comparing figure 6 to the results presented in [12]. The mode
C wavelength found in the present results is also reasonably close to the value of
1.8D reported in [16]. In this study, mode C appeared in their experiments when
a thin control wire was placed near the cylinder, and they reproduced this result
in computational simulations by enforcing zero velocity in the point of the mesh
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that corresponded to the coordinate of the centre of the control wire. We note that
asymmetry is again involved in the base flow.

4.3. Non-linear analysis

In order to investigate the non-linear evolution of mode C, fully three-dimensional
simulations were also performed. The configurations Ly = 1.0, Ly = 2.0, Ly =
2.5 and Ly = 3.0 were tested, and Reynolds numbers slightly higher than critical
Re for mode C bifurcation (Rec) for each configuration were selected. For each
case, the periodic span of the domain was the wavelength of the mode C instability
at its onset and the growth and saturation of the infinitesimal perturbation were
observed. By plotting graphs of d[ln(A)]/dt against |A|2, as in [12], and comparing
the growth predicted by the linear stability results to the actual growth observed
in the simulations, we could characterise the bifurcation type for mode C in each of
the configurations.
The rightmost column of table 1 shows the results of the non-linear analysis. Mode
C bifurcation is subcritical for Ly = 1.0, supercritical for Ly = 2.0 and Ly = 2.5
and again subcritical for Ly = 3.0. However, since the vortex shedding regime for
Ly = 1.0 is different from that for Ly > 2.0, the configuration Ly = 1.0 must be
considered separately if we want to isolate the three-dimensional effects.
For configurations Ly = 2.0 and Ly = 2.5 mode C presented a supercritical character,
but it bifurcated before mode A for Ly = 2.0 and after mode A for Ly = 2.5. For
Ly = 3.0, it bifurcated after mode A, but through a subcritical route. As far as we
are aware, this is the first time it is reported that when mode C become unstable
after mode A, it can be done through either a supercritical or a subcritical route,
depending on the geometry. To the best of our knowledge, the only publication
that addressed a non-linear analysis of mode C transition was [12], and the mode C
bifurcations reported there are either supercritical and before mode A or subcritical
and after mode A.

5. Conclusion

The basic modes in the wake transition in the flow around a single circular cylinder,
modes A and B, were also found in the staggered arrangements considered in this
investigation. This enforces the thesis that these modes are fundamental in the
transition to turbulence in vortex wakes, even in the case of multiple cylinders.
Another important finding of this study was the presence of mode C in the wake
transition for some asymmetrical arrangements. The linear stability results for this
mode agree well with previous investigations [11, 16] in many aspects, such as type
of perturbation symmetry, wavelength and periodicity. Interestingly, while modes
A and B appear in the near wake of the upstream cylinder, while mode C appears
in the near wake of the downstream cylinder. The non-linear analysis showed that
mode C can bifurcate through either a subcritical or a supercritical route, depending
on Ly, and the character of this bifurcation is not directly related to order the modes
bifurcate.
For Ly > 1.0, all three modes appear in the Re range investigated, and the fact that
mode C appears for Ly = 1.0 and for Ly > 2.0 indicates that the vortex shedding
regime and the presence of mode C are not directly related, although both depend
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on the geometrical configuration of the bodies. In addition, the fact that mode C
appeared for two substantially different wakes (Ly = 1.0 and Ly > 2.0) corroborates
the thesis that mode C is a fundamental mode in the transition of time-periodic
wakes with a certain degree of Z2 asymmetry [11, 12]. This mode seems to replace
the quasi-periodic mode that emerges in Z2 symmetric wakes [3, 10], spanning the
same wave number range.
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