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Abstract. Elements of the theoretical foundation for control of local and global instabilities
in laminar separation bubble (LSB) ows are presented. The classic decelerated boundary layer
of Howarth [12, 13] in which BiGlobal eigenmodes of separated ow were �rst discovered [21] is
revisited. A systematic investigation covering the Reynolds number range Re 2 [103; 105] has been
performed and has revealed the boundary between steady- and time-periodic (shedding) basic LSB
ows. Validation solutions of the adjoint BiGlobal eigenvalue problem are then presented and �rst
steps toward massively parallel solution of both the direct and the adjoint BiGlobal EVP are
discussed.
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1. Introduction

The seminal work of Briley [4] demonstrated that direct numerical simulation (DNS)
of the full Navier-Stokes equations con�nes the (in)famous Goldstein singularity, as-
sociated with Howarth's [12] decelerated boundary layer, within the realm of numeri-
cal solutions of the non-interactive, non-similar boundary-layer equations. Briley re-
solved the full equations of motion on a at plate, within a domain f[x1; x2]� [0; y1]g
in the streamwise, x, and wall{normal, y, spatial directions, respectively. In the far-
�eld he imposed Howarth's free-stream velocity distribution

�u(x; y !1) =

(
�0 � �1x xl � x � x0;
�0 � �1x0 x0 � x � x2;

(1)

using x0 as a free parameter to control the extent of the linear deceleration re-
gion, and was capable to recover steady laminar separated bubbles embedded in-
side boundary layer ows. In this context, the parameter �0 corresponds to the
(dimensional) free-stream velocity which, together with the deceleration parameter
�1, may be used in order to build a length scale, �0=�1; in turn, the free-stream
velocity, this length scale and the ow kinematic viscosity � may be used to de�ne
the ow Reynolds number

Re =
�2
0

�1�
: (2)

In the multi-parametric problem at hand (and no doubt on account of the limited
computing capabilities of that time) Briley [4] mainly concentrated on the e�ect of
x0 on the LSB at a few representative values of the Reynolds number.
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About a decade ago, Theo�lis [21] and Theo�lis, Hein & Dallmann [27] have recov-
ered steady LSB ows using Howarth's model and DNS, and went on to analyze these
ows with respect to their local and global instability properties. While evidence
on the existence of global modes in model separated ows was already available {
albeit using a methodology which relies on the assumption of weakly-nonparallel
basic ow [2, 10] { of particular interest in [21, 27] was the �rst application of the
BiGlobal eigenvalue problem (EVP) concept and the subsequent discovery of am-
pli�ed three-dimensional global modes of LSB ows. The key di�erence between
[21, 27] and [2, 10] is that the BiGlobal methodology permits instability analysis of
arbitrary two{dimensional basic states, and has indeed been used since in several ap-
plications of engineering signi�cance in which LSB appear; see [22] for a discussion.
No parametric BiGlobal EVP studies were performed in [21, 27], since the serial
solution methodology followed required state-of-the-art supercomputing facilities of
that era, in order for convergence of the eigenspectrum results to be attained. Using
the same incompressible BiGlobal EVP approach, Robinet and Joubert de la Motte
[18] have con�rmed the global modes found in [21, 27] and have also identi�ed three-
dimensional ampli�ed global modes in di�erent incompressible LSB ows. Recently,
Robinet [17] has discovered BiGlobal instabilities in LSB ows which result from
shock/boundary-layer interaction. In all cases studied so far, BiGlobal instability of
LSB ows is a feeble modal mechanism, which may co-exist with the well-known and
order-of-magnitude stronger Kelvin-Helmholtz (KH) inviscid instability associated
with the inectional nature of the shear-layer pro�le. Nevertheless, in the light of
the discovery of global modes in LSB ows, ow control methodologies aiming at
ow modi�cations through control of modal instabilities need to take both the local
and the global instability mechanisms into consideration.

The present contribution continues the renewed e�orts, which have commenced
recently [24], on the systematic characterization and control of modal instability
mechanisms in LSB ows. Initially, elements of the theoretical foundation of the
ow control problem are discussed [7, 9] and the direct and adjoint BiGlobal eigen-
value problems are de�ned. The BiGlobal methodology, as opposed to EVPs of
the Orr-Sommerfeld class [11], has been chosen here, since it encompasses results of
the latter methodology in LSB ows [19, 24] and has also been demonstrated to be
appropriate for the related attached boundary{layer problem [7, 16]. Subsequently,
attention is turned to the underlying basic states; the well-documented and relevant
to external aerodynamics decelerating boundary{layer model of Howarth [12] is used
in order to impose the adverse pressure gradient; in this context, the boundaries of
the parameter space within which steady bubbles exist are documented in the range
Re 2 [103; 105], as are integral ow quantities, such as the thickness of the incoming
boundary layer and the maximum absolute value of the reverse ow. 1 Finally,
attention is turned to the EVPs and the numerical solution of the adjoint BiGlobal
EVP is validated on a ow case that is well-documented and less-challenging from
a resolution requirements point of view. On the other hand, accurate description of
convective BiGlobal eigenmodes of LSB ow [24] renders the commonly used serial
solutions of the BiGlobal EVP problems inadequate; a discussion of pivotal deve-
lopments toward e�cient massively parallel solution of the BiGlobal EVPs closes
the present contribution.

1characterization of the bubbles themselves is still an open question [8, 6]
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2. Theoretical Background:

the incompressible direct and adjoint BiGlobal EVPs

The (direct) linearized incompressible Navier-Stokes and continuity equations read

@q̂�

@t
+N (�q)q̂� +rp̂� = 0; (3)

r � q̂� = 0: (4)

Assuming modal perturbations and homogeneity in the spanwise spatial direction,
z, eigenmodes are introduced into the linearized direct Navier-Stokes and continuity
equations according to

(q̂�; p̂�) = (q̂(x; y); p̂(x; y))e+i(�z�!t); (5)

where q̂� = (û�; v̂�; ŵ�)T and p̂� are, respectively, the vector of amplitude functions
of linear velocity and pressure perturbations, superimposed upon the steady two-
dimensional, two- ( �w � 0) or three-component, �q = (�u; �v; �w)T , steady LSB basic
states. The spanwise wavenumber � is associated with the spanwise periodicity
length, Lz, through Lz = 2�=Lz. Substitution of (5) into (3-4) results in the complex
direct BiGlobal eigenvalue problem [22]

ûx + v̂y + i�ŵ = 0; (6)

(L � �ux + i!) û� �uyv̂ � p̂x = 0; (7)

��vxû+ (L � �vy + i!) v̂ � p̂y = 0; (8)

� �wxû� �wyv̂ + (L+ i!) ŵ � i�p̂ = 0; (9)

where

L =
1

Re

 
@2

@x2
+

@2

@y2
� �2

!
� �u

@

@x
� �v

@

@y
� i� �w: (10)

The derivation of the complex BiGlobal eigenvalue problem governing adjoint per-
turbations is constructed using the Euler-Lagrange identity [15, 7, 3, 16, 14, 9]," 

@q̂�

@t
+N q̂� +rp̂�

!
� ~q� +r � q̂�~p�

#
+

"
q̂� �

 
@~q�

@t
+N y~q� +r~p�

!
+ p̂�r � ~q�

#
=

@

@t
(q̂� � ~q�) +r � j(q̂�; ~q�); (11)

as applied to the linearized incompressible Navier-Stokes and continuity equations.
Here the operator N y(�q) results from linearization of the convective and viscous
terms in the direct and adjoint Navier-Stokes equations and is explicitly stated else-
where (e.g. [7]). The quantities ~q� = (~u�; ~v�; ~w�)T and ~p� denote adjoint disturbance
velocity components and adjoint disturbance pressure, and j(q̂�; ~q�) is the bilinear
concomitant. Vanishing of the RHS term in the Euler-Lagrange identity (11) de�nes
the adjoint linearized incompressible Navier-Stokes and continuity equations

@~q�

@t
+N y~q� +r~p� = 0; (12)

r � ~q� = 0; (13)

3



V. THEOFILIS

Assuming modal perturbations and homogeneity in the spanwise spatial direction,
z, eigenmodes are introduced into (12-13) according to

(~q�; ~p�) = (~q(x; y); ~p(x; y))e�i(�z�!t): (14)

Note the opposite signs of the spatial direction z and time in (5) and (14), denoting
propagation of ~q� in the opposite directions compared with the respective one for
q̂�. Substitution of (14) into the adjoint linearized Navier-Stokes equations (12-13)
results in the complex adjoint BiGlobal EVP

~ux + ~vy � i� ~w = 0; (15)�
Ly � �ux + i!

�
~u� �vx~v � �wx ~w � ~px = 0; (16)

��uy~u+
�
Ly � �vy + i!

�
~v � �wy ~w � ~py = 0; (17)�

Ly + i!
�
~w + i�~p = 0; (18)

where

Ly =
1

Re

 
@2

@x2
+

@2

@y2
� �2

!
+ �u

@

@x
+ �v

@

@y
� i� �w: (19)

Note also that the two-dimensionality of the LSB basic state implies �w � 0 in both
the direct and adjoint EVP, both of which may be reformulated to use real arrays
alone [22, 25], thus saving half of the otherwise necessary memory requirements for
the coupled numerical solution of the EVPs (6-9) and (15-18).

Boundary conditions for the partial-derivative based adjoint EVP may be devised
following the general procedure of expanding the bilinear concomitant in order to
capture traveling disturbances [7]. However, here focus is on global modes, which
previous investigations have shown to be located in the immediate vicinity of the
primary laminar separation bubble [21, 27]. This permits use of simpler set of
boundary conditions, as follows. For the direct problem, homogeneous Dirichlet
boundary conditions are used at the inow, x = xIN , wall, y = 0, and far-�eld,
y = y1, boundaries, alongside linear extrapolation at the outow boundary x =
xOUT . Consistently, homogeneous Dirichlet boundary conditions at y = 0, y = y1
and x = xOUT , alongside linear extrapolation from the interior of the computational
domain at x = xIN , are used in order to close the adjoint EVP.

Luchini and co-workers have recently put forward the idea of structural sensitivity
of global modal perturbations, which may be identi�ed through a direct-adjoint
BiGlobal eigenmode product, and successfully applied the concept to the lid-driven
cavity ow [14] and the cylinder wake [9]. The former ow, which shares with the
LSB the two-component character of the basic state, has served here for validations
of the numerical solution of (15-18); in this case, homogeneous Dirichlet boundary
conditions on the adjoint perturbations have been imposed.
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2.1. Basic Flow Documentation

The LSB basic ow is obtained via two-dimensional DNS, solving simultaneously
the vorticity-transport equation, alongside the relationship between vorticity, �, and
streamfunction,  ,

�t +  y�x �  x�y =
1

Re
r2� + �f (x)(� � Z); (20)

r2 + � = �f (x)( �	): (21)

The components of the basic ow velocity vector, (�u; �v)T, appearing in the EVPs
(7-9) and (16-18) may be obtained from �u � @ =@y and �v � �@ =@x; note also
that in the present work �w � 0 is considered. A fringe function, �(x) [20, 26], is
used in order to return the ow to its inow state, Z and 	, respectively.

Spatial discretization of (20-21) is accomplished by mapped Chebyshev Gauss-
Lobatto (CGL) spectral collocation schemes along the wall-normal, y�, and stream-
wise, x�, spatial direction. The standard CGL domain,

�j = cos j�=N; j = 0; � � � ; N (22)

is mapped onto a �nite domain, � 2 [�l; �r] via a rational function

� = � (�) = a
1 + b� �

1 + c+ �
; (23)

where

a =
�2�l�r + �0 [�r (1 + �0) + �l (1� �0)]

�r (1� �0) + �l (1 + �0)� 2�0
; (24)

b =
2

a

�l (a+ �r)

�r � �l
; (25)

c =
2 (a+ �l)

�r � �l
: (26)

Here � may denote either of the streamwise, x, or wall-normal, y, spatial direc-
tions and �0; �0 are free parameters used to control resolution in critical ow areas.
The chain rule is used in order to de�ne collocation derivative matrices, d=d� and
d2=d�2, on the calculation grid �, given the collocation derivative matrices on the
standard Chebyshev domain, D � d=d� and D2 � D (D) [5], with the metrics of
the transformation (23) calculated analytically.

Regarding boundary conditions for the basic ow problem, at the inow boundary
data is obtained from a boundary layer solution [22],

�(x = xl; y) � Z(y);  (x = xl; y) � 	(y): (27)

At the outow boundary, Briley's downstream boundary conditions,

�xx =  xx = 0; (28)

are used to close the system (20-21); in this case, no fringe treatment is required
(i.e. �f (x) � 0). Along y, the system (20-21) is closed by the boundary conditions

�(x; y = y1) = 0; (29)

 (x; y = 0) = 0;  y(x; y = 0) = 0;  y(x; y = y1) = �u(x; y !1): (30)
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Table 1. Identi�cation of the x0 parameter range within which a steady laminar separation
bubble forms. Howarth parameters taken �0 = 100; �1 = 300 and Reynolds number range
examined Re 2 [103; 105]. "inc" indicates incipient separation and "tp" stands for time-
periodic ow.

103� 10�2� 102�
ReL ��

in
Re��

infl

x0 t1 Steady LSB maxf�u1g maxfj�urevj=�u1g �sep �reat

5000 2.107 31.61 0.25 0.14 y n 0.75 - - -
5000 2.107 31.61 0.26 0.15 y y 0.74 0.009 0.1340 0.1848
5000 2.107 31.61 0.27 0.21 y y 0.73 0.973 0.0986 0.2741
5000 2.107 31.61 0.28 - n - 0.72 - - -

10000 1.490 44.70 0.24 0.11 y n 0.76 - - -
10000 1.490 44.70 0.25 0.15 y y 0.75 0.227 0.0891 0.1687
10000 1.490 44.70 0.26 - n - 0.74 - - -

15000 1.216 54.72 0.23 0.09 y n 0.77 - - -
15000 1.216 54.72 0.24 0.14 y y 0.76 - 0.0795 0.1421
15000 1.216 54.72 0.25 - n - 0.75 - - -

20000 1.053 63.18 0.22 0.07 y n 0.78 - - -
20000 1.053 63.18 0.23 0.09 y y 0.77 0.007 0.0854 0.1070
20000 1.053 63.18 0.24 0.25 y y 0.76 1.325 0.0637 0.1604
20000 1.053 63.18 0.25 - n - 0.75 - - -

20833 1.032 64.50 0.22 0.07 y n 0.78 - - -
20833 1.032 64.50 0.23 0.10 y y 0.77 0.023 0.0815 0.1111
20833 1.032 64.50 0.24 0.20 y y 0.76 1.378 0.0607 0.1665
20833 1.032 64.50 0.25 - n - 0.75 - - -

30000 0.860 77.40 0.21 0.05 y n 0.79 - - -
30000 0.860 77.40 0.22 0.07 y inc 0.78 - - -
30000 0.860 77.40 0.23 - n - 0.77 - - -

100000 0.471 141.34 0.17 0.08 y n 0.83 - - -
100000 0.471 141.34 0.18 - tp n 0.82 - - -

A documentation of the Howarth separated boundary layer ow for Briley's param-
eters �0 = 100 and �1 = 300 may be found in table 1; note that chord Reynolds
numbers representative of ight conditions fall within the Re�range shown. The
time lapsed until a steady state solution is obtained (when such a state exists) is
denoted by t1, �urev is the recirculation velocity and �sep; �reat are the streamwise wall
coordinates of the streamline  = 0. A limited number of the available results at
di�erent Reynolds numbers is shown in the x0�range around separation, alongside
an indication whether a steady-state (attached or separated) exists and whether a
steady LSB has been formed.

It is observed that t1 is a function of x0 but is independent of Re. Results well-
known from other LSB model studies have been recovered in the present Howarth
context, namely that the basic states are extremely sensitive to small parameter
changes at all Re�values examined, and also that the appearance of steady LSB ow
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is a low-Reynolds number phenomenon; evidence exists that beyond Re � 3 � 104

either attached steady states (albeit mildly decelerated) or time-periodic shedding
bubbles are the only ows that may be sustained. The time-dependence of the
signal at an arbitrarily chosen �eld point is shown in �gure 1 at Re = 105, both in
its entire development in time and as a zoom into a short-time interval of several
shedding periods. In a global instability analysis context, the loss of steady ow
at a particular Reynolds number is an indication of global instability of the � = 0
direct BiGlobal eigenmode above this Reynolds number value and damping of the
same mode below this threshold. Another interesting result is the shortening of
the LSB with increasing Reynolds number, although the strength of recirculation
does not appear to depend on Re. This latter result should be put in context by
reference to analogous results in other LSB con�gurations, which monitor time-
averaged, as opposed to steady laminar quantities. Quanti�cation of these points,
based on solutions of the direct EVP, is currently underway.

2.2. EVP Results

The classic square lid-driven cavity (LDC) has served as testbed of numerical algo-
rithms for the solution of the incompressible equations of motion in two- and three
spatial directions. The di�erences between the results of the two approaches (2-d
solutions predict steady laminar ow up to Re � 8500 while 3-d ow becomes un-
steady and turbulent at Re � 1000) have been identi�ed independently by Theo�lis
[23] and Albensoeder, Kuhlmann and Rath [1] to originate in linear (modal) three-
dimensional BiGlobal instability. BiGlobal instability in the lid-driven cavity is now
well-understood, making this ow a good candidate in order to validate numerical
solutions of the adjoint BiGlobal eigenvalue problem, unlike the LSB ow in which
the demarcation between KH and global instability is presently not documented.
It is well-known that the direct and adjoint eigenspectra are complex conjugates of
each other; this result is clearly visible in �gure 2, which shows the leading eigenval-
ues ! obtained from numerical solution of the direct (6-9) and the adjoint (15-18)
EVPs at the critical conditions of LDC ow, Re = 782:61; � = 15:37. The region
of maximum ow sensitivity, associated with the direct-adjoint product [14], is also
shown in this �gure. These results, as well as others in analogous ows not pre-
sented here, have veri�ed and validated the numerical solution of (15-18) and build
con�dence in the capacity of the method to address the LSB ow control problem.

However, numerical solutions of the direct BiGlobal EVP in LSB ows, the basic
states of which may be found in the results of table 1, have revealed the large resolu-
tion requirements for accurate description of convective instabilities, when these are
recovered as BiGlobal eigenmodes [24]. On the other hand, the numerical solution of
both the direct and the adjoint BiGlobal EVP relies on an iterative Krylov subspace
iteration method which, in turn, solves a number of large linear systems equal to
the subspace dimension. A key element of this process is a single LU-decomposition
of the matrices which discretize the LHS of (6-9) and (15-18). The in-core storage
of these matrices con�nes serial solution of the EVP problems to low resolutions,
while the associated LU-decompositions are responsible for practically all the CPU
time consumed in the Krylov iteration; on both counts, parallelization of the LU
decompositions is a promising way forward. First steps, using up to 32 nodes (64
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Myrinet-interconnected processors) and focusing on the solution of a single Poisson-
based model linear system, have shown linear scaling of the wall CPU time with
the number of processors [24]. At the same time, memory is distributed over all
available processors, such that eventually the size of the BiGlobal EVP which can
be solved will become a function of the number of processors available. Here, a fur-
ther step is taken, which integrates the parallel linear-system solution methodology
into an iterative, Arnoldi eigenvalue problem solution. Again, instead of targeting
either of (6-9) or (15-18), a related EVP which preserves the essential BiGlobal
EVP ingredient of the Laplacian operator is chosen, namely r2f = �f , for which
the eigenvalues are analytically known [28]. Figure 3 shows the leading eigenvec-
tor of this EVP, obtained by parallelizing the Arnoldi algorithm and distributing
the matrix which discretizes the nabla operator over four processors. All digits of
the corresponding eigenvalue, � = 2�2=4, have been recovered correctly in double
precision, while the (color-coded as blue, red, green and cyan) distribution of the
eigenvector over the four processors is also visible. This result builds con�dence in
the parallel solution of the BiGlobal eigenvalue problems (6-9) and (15-18), which
is also underway.
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Figure 1. Dependence on time of the value of the streamfunction at an arbitrarily-chosen
point in the calculation domain at Re = 105. Left: complete development, starting from
rest until the establishment of shedding. Right: Detail of the shedding process.
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Figure 2. Left: Direct and adjoint eigenspectra in the neighborhood of ! = 0 at critical
conditions of the lid-driven cavity ow. Right: Direct-Adjoint product of the leading
eigenmode [14, 9].
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sponding to the eigenvalue 2�2=4 (courtesy of Mr. D. Rodriguez)
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