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Abstract. A rational treatment of time-mean separation of a nominally steady turbulent bound-
ary layer from a smooth surface in the limit Re → ∞, where Re denotes the globally defined
Reynolds number, is presented. As a starting point, it is outlined why the ‘classical’ concept of
a small streamwise velocity deficit in the main portion of the oncoming boundary layer does not
provide an appropriate basis for constructing an asymptotic theory of separation. Amongst others,
the suggestion that the separation points on a two-dimensional blunt body is shifted to the rear
stagnation point of the impressed potential bulk flow as Re → ∞ – expressed in a previous related
study – is found to be incompatible with a self-consistent flow description. In order to achieve
such a description, a novel scaling of the flow is introduced, which satisfies the necessary require-
ments for formulating a self-consistent theory of the separation process that distinctly contrasts
former investigations of this problem. As a rather fundamental finding, it is demonstrated how
the underlying asymptotic splitting of the time-mean flow can be traced back to a minimum of
physical assumptions and, to a remarkably large extent, be derived rigorously from the unsteady
equations of motion. Furthermore, first analytical and numerical results displaying some essential
properties of the local rotational/irrotational interaction process of the separating shear layer with
the external inviscid bulk flow are presented.
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1. Introduction

The rational description of break-away separation of a statistically steady and two-
dimensional incompressible turbulent boundary layer flow past an impermeable rigid
and smooth surface in the high-Reynolds-number limit represents a long-standing
unsolved hydrodynamical problem. Needless to say that an accurate prediction
of the position of separation, in combination with the local behaviour of the skin
friction, has great relevance for many engineering applications, where e.g. internal
flows, like those through diffuser ducts, or flows past airfoils play a crucial role.

1.1. Problem Formulation and Governing Equations

The picture of such flows near separation is sketched in Figure 1. As a basic assump-
tion, the suitably formed global Reynolds number Re is taken to be asymptotically
large,

Re = Ũ L̃/ν̃ → ∞, ν = Re−1 → 0. (1)
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Herein ν̃, L̃, and Ũ denote, respectively, the (constant) kinematic viscosity of the
fluid, a reference length, typical for the geometry of the portion of the surface under
consideration, and a characteristic value of the surface slip velocity impressed by the
limiting inviscid stationary and two-dimensional irrotational bulk flow, hereafter
formally indicated by ν = 0. All flow quantities are suitably non-dimensionalised
with L̃, Ũ , and the (uniform) fluid density. Let t, p, x = (s, n, z), and u = (u, v, w)
be the time, the fluid pressure, and the position and the velocity vector. Here u,
v, and w are the components of u in directions of the natural coordinates s, n,
and z, respectively, along, normal to, and projected onto the separating streamline
S, given by n = 0, of the flow in the limit ν = 0. Furthermore, ue(s) denotes the
surface slip velocity in that limit. The origin s = n = 0 is chosen as the location S
where S departs from the surface. Thus, S coincides with the surface contour for
s ≤ 0. Also, note that S has, in general, a curvature of O(1) for |s| = O(1).
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Figure 1. Time-mean flow near (a) smooth separation (the dotted streamline indicates
possible backflow), (b) separation due to stagnation of the bulk flow, cf. [5]. The inviscid
limit of u is shown dashed, and the turbulent shear flow is indicated by a shading.

In coordinate-free form the Navier–Stokes equations then are written as

∇ · u = 0, (2a)

Dt u = −∇p + ν ∆u, Dt = ∂t + u · ∇, ∆ = ∇ · ∇, (2b)

where ∇ is the gradient with respect to x. They are subject to the common no-slip
condition u = 0 holding at the surface. As a well-known characteristic, the station-
ary Reynolds-averaged turbulent flow can be expressed in terms of the time-averaged
motion. In the following we employ the conventional Reynolds decomposition of any
(in general, tensorial) flow quantity q into its time-mean component q, here regarded
as independent of z, and the (in time and space) stochastically fluctuating contri-
bution q′,

q(x, t, . . .) = q(x, y, . . .) + q′(x, t, . . .), q = lim
Θ→∞

1

Θ

∫ Θ/2

−Θ/2

q(x, t + θ, . . .) dθ. (3)

Herein the dots indicate any further dependences of q apart from x and t. Reynolds-
averaging of (2) then yields the well-established Reynolds equations (in the case
∂z ≡ 0 of planar time-mean flow),

∇ · u = 0, (4a)

Dt u = −∇p −∇ · u′u′ + ν ∆u, Dt = u · ∇. (4b)
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It is further presumed in the subsequent analysis, that all components of the Reynolds
stress tensor −u′u′ are, in general, of asymptotically comparable magnitude (as-
sumption of locally isotropic turbulence). Most important, we disregard any effects
due to free-stream turbulence. That is, the turbulent motion originates from the
relatively thin fully turbulent boundary layer adjacent to the surface, which near S
passes into an accordingly slender separated free shear layer along S for s > 0.

1.2. Motivation

From an asymptotic point of view, three outstanding contributions to the solution
of the problem under consideration have to be mentioned.

Sychev [11, 12] was the first who elucidated the question of the asymptotic struc-
ture of the oncoming boundary layer by proposing a three-layer splitting of the latter,
sufficiently far ahead of S. This scaling, however, is at variance with the classical
finding of a two-tiered boundary layer that is found to hold for firmly attached flow
only (see, for instance, the pioneering work by Mellor [3]). We start the outline
of both formulations by noting that each of them adopts the familiar description
of the viscous wall layer close to the surface; the same holds for the flow descrip-
tions discussed subsequently. On top of that region the Reynolds shear stress −u′v′

asymptotically equals the (local) wall shear stress, given by the square of the skin
friction velocity u∗, and the streamwise velocity component u satisfies the celebrated
logarithmic law of the wall. By using the conventional notation, it reads

u/u∗ ∼ κ−1 ln n+ + C+, n+ = nu∗Re → ∞, (5)

where the well-known constants κ and C+ are quantities of O(1). The match of the
wall region with the adjacent layer then shows that the expansion

[u,−u′v′/u2

∗
] ∼ [u0, T0](s, η) − γ[U1, T1](s, η) + O(γ2), η = n/δ, (6)

holds in the latter. Here, δ is a measure for the thickness of that layer, and, by
introducing the so-called slip velocity us, the gauge function γ is seen to satisfy the
skin-friction law

γ = u∗/us ∼ κ/ lnRe, dγ/ds = O(γ2), us(s) = u0(s, 0). (7)

In the classical two-tiered description of the boundary layer, cf. [3], it is assumed
that in the fully turbulent main region the (positive) streamwise velocity ‘defect’
with respect to the external potential flow, ue − u, is asymptotically small. In
turn, u0(s, η) ≡ us(s) ≡ ue(s), and in the boundary layer limit the momentum bal-
ance (4b) reduces to a balance between the linearised convective terms and ∂n(−u′v′)
in leading order, showing that the boundary layer thickness δ is of O(γ). In contrast,
according to [11, 12] the expansion (6) holds in the additionally introduced middle
layer which meets the requirement that the velocity defect ue − u and, consequently,
ue − us are quantities of O(1). Thus, in the boundary layer approximation to (4b)
the convective terms balance both ∂n(−u′v′) and the imposed (adverse) pressure
gradient −ue due/ds, such that the thickness δ of the middle layer is of O(γ2). This
wake-type flow structure then allows for a significant decrease in the wall shear stress
according to (7) when us tends to zero as s → 0− and, moreover, for the occurrence
of flow reversal further downstream by adopting a local turbulent/irrotational in-
teraction strategy (without the need of a specific turbulence closure).
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One readily finds that the gradients ∂nu in the viscous wall layer and the ad-
jacent layer, described by (6), match on the basis of (5) provided that ∂ηu0 ≡ 0.
Unfortunately, this again gives u0(s, η) ≡ us(s) ≡ ue(s) and thus contradicts the
original assumption of a large velocity defect in the middle layer. That inherent
mismatch of the wall layer and the wake region was first noted by Melnik [4], who
used mixing length arguments, in the second work to be highlighted. Therefore, Sy-
chev’s approach can hardly be accepted as a self-consistent theory. However, Melnik
also proposed a non-classical initially three-tiered boundary layer where the outer-
most part plays the role of the aforementioned middle layer. But most important,
and in striking difference to any previous asymptotic treatment of turbulent shear
flows, in [4] the slenderness of the latter is measured by some small non-dimensional
parameter, denoted by α, which is regarded to be essentially independent of Re.
Melnik’s motivation for the resultant two-parameter matched asymptotic expan-
sions of the flow quantities merely relies upon the observation that any commonly
employed shear stress closure includes a small number (a most familiar example is
the so-called Clauser ‘constant’ α ≈ 0.0168 in the algebraic Cebeci-Smith model)
which is seen to measure the boundary layer thickness if the velocity defect in the
fully turbulent flow regime is taken to be of O(1). This idea has been followed up
and substantiated by order-of-magnitude reasoning by Scheichl and Kluwick [7, 6],
where it is shown to provide a sound basis for developing a self-consistent theory of
turbulent marginal separation. On the other hand, it is found that Melnik’s theory
cannot be extended in order to describe the global separation process due to two
serious shortcomings: (i) the proposed flow structure is strongly associated with
the adopted coupling α1/2 lnRe = O(1), which is apparently inconsistent with the
original assumption on α and, hence, does not allow for a correct formulation of
the gradual transition from attachment to separation of the flow inside the wall
layer; (ii) the impressed potential flow does not exhibit a free streamline departing
smoothly from the surface, in order to avoid a Goldstein-type singularity encoun-
tered by the boundary layer solution that is evidently unsurmountable by assuming
a firmly attached external bulk flow, cf. [7].

A different viewpoint was taken up in the third contribution to be noticed, by
Neish and Smith [5]. They considered the streamwise development of a classical
small-defect boundary layer where the irrotational external flow is indeed presumed
to be strictly attached; that is, it exhibits a rear stagnation point, see Figure 1 (b).
Interestingly, this concept is fully consistent with the following important finding
elucidated in the subsequent analysis: in the case of smooth inviscid flow detach-
ment, as depicted in Figure 1 (a), the associated singular behaviour of the surface
pressure immediately upstream of the (a priori unknown) position of S does not
trigger a significant change in the order of magnitude of the (initially small) veloc-
ity defect, which would be necessary to render smooth boundary layer separation
possible. Consequently, within the framework of classical turbulent boundary layer
theory separation is suggested to occur asymptotically close to the rear stagnation
point as Re → ∞.

Unfortunately, however, it is not addressed satisfactorily in [5] whether and how
the small velocity defect may rather abruptly become of O(1) due to the retardation
of the potential flow as the stagnation point S is approached in order to ensure an
uniformly valid flow description. As pointed out in the first part of the present study,
the inviscid vortex flow induced in the immediate vicinity of the stagnation point
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S indeed appears to hamper severely the construction of a self-consistent asymp-
totic theory. This finding represents the starting point for the subsequent analysis,
where it is shown how the closure-independent asymptotic formulation of a turbulent
boundary layer having a finite thickness of O(α), α ≪ 1, as Re → ∞ and which may
undergo marginal separation, see [7], can be adapted to that of massive separation.
Unlike the theories presented in [4, 5], here the formal limit α = Re−1 = 0 corre-
sponds to the required class of inviscid flows with free streamlines. Furthermore,
we demonstrate how the asymptotic scaling of the (oncoming) flow, which in [7]
was based on rather heuristic arguments from a time-averaged point of view, can be
deduced by means of a multiple-scales analysis of the equations of motion (2).

We commence the investigation by considering the evolution of the boundary
layer immediately upstream of the surface position S, indicating inviscid separation.

2. Limitations of the Small-Defect Approach

The case where the streamwise velocity defect in the fully turbulent main region
of the boundary layer is small, say, ue − u = O(ǫ), ǫ ≪ 1, is considered first. To
be more precise, we assume that ǫ = γ, according to (6) and (7) (although the
more general assumption γ/ǫ = O(1), including o(1), would not alter the following
analysis substantially). Therefore, the boundary layer thickness δ is of O(γ) and
expanded as

δ/γ = ∆0(x) + γ∆1(x) + · · · . (8)

By setting U1/ue = F ′

0(s, η), η = O(1), the leading-order streamwise momentum
equation, supplemented with appropriate boundary and matching conditions, then
reads

ue[d(ue∆0)/ds]ηF ′′

0 − ∆0∂s(u
2

eF
′

0) = u2

eT
′

0, (9a)

F0(s, 0) = T0(s, 0) − 1 = 0, F ′

0 ∼ −κ−1 ln η + O(1), η → 0, (9b)

F ′

0(s, 1) = F ′′

0 (s, 1) = T0(s, 1) = 0. (9c)

We note, that in this connection primes denote derivatives with respect to η. Also,
it will prove convenient to integrate (9a) with respect to η by using (9b), which gives

u2

e[d(ue∆0)/ds]ηF ′

0 − ∂s(u
3

e∆0F0) = u3

e(T0 − 1). (10)

Finally, evaluation of (10) at the boundary layer edge and subsequent integration
from some value s0 < 0 to s < 0 yields

d[u3

e∆0F
′

0(s, 1)]/ds = u3

e, u3

e(σ)∆0(σ)F ′

0(σ, 1)
∣

∣

∣

σ=s

σ=s0

=

∫ s

s0

u3

e(σ) dσ. (11)

In order to asses the assumption of a small velocity defect holding in the oncoming
flow with respect separation, we analyse (9) in the limit s → 0− for the two different
cases indicated by Figure 1 (a) and (b), respectively. Without adopting a specific
turbulence closure, we begin the analysis by considering the first case.
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2.1. Flow Slightly Upstream of Smooth Separation

It is well known that, under rather general conditions concerning the flow in the
stagnant or backflow region where s > 0 and n < 0,

ue(s)/ue(0) ∼ 1 + 2k(−s)1/2 + 10k2/3 (−s) + O
[

(−s)3/2
]

, s → 0−, (12)

in the inviscid limit ν = 0, cf. [1], for instance. Here the non-negative parameter k
parametrises the class of smoothly separating flows as it depends on the position of
S on the body contour. It gives rise to a locally adverse and unbounded pressure
gradient −ue due/ds ∼ k(−s)−1/2. Therefore, the question arises if the latter pro-
vokes a significant increase of the velocity defect in the oncoming boundary layer,
which is required for a correct description of flow reversal further downstream.

In order to keep the analysis as general as possible, we only assume that

ue(s)/ue(0) ∼ 1 + χ(s) + · · · , |dχ/ds| → ∞, s → 0−. (13)

This singular behaviour is expected to provoke a considerable growth of the turbulent
velocity scale u∗ (and, in turn, of the fluctuations), expressed through a gauge
function ϕ(s),

F0 ∼ ϕ(s)G(η) + · · · , T0 ∼ ϕ2(s)R(η) + · · · , ϕ → ∞, s → 0−. (14)

From (11), (14), and the fact that ue in (13) admits a finite limit, there follows a
(intuitively rather unexpected) decrease of the boundary layer thickness of the form
∆0 ∼ D/ϕ, where D is a (positive) constant. Also note, that the term ∂s(u

3
e∆0F0)

in (10) is bounded for s → 0−. Since ue is bounded too, the first term in (10)
asymptotically equals −Du3

e(0)η G′(η) d(ln ϕ)/ds. As the velocity defect and, in
turn, G′ are non-negative, that expression tends to −∞ for s → 0−. Then ϕ is
seen to be proportional to (−s)−1/2, as (10) reduces to a balance between that
negative term and u3

e ϕ2(s)R(η). The latter term, however, is non-negative, as is the
Reynolds stress T0 in the oncoming flow. From this contradiction one then infers
that F0, T0, and ∆0 are finite for s → 0−. Consequently, inspection of (10) and (13)
shows that (14) is to be replaced by a sub-expansion of expansion (6),

[F0, T0, ∆0] ∼ [F00(η), T00(η), ∆00] + χ(s)[F01(η), T01(η), ∆01] + · · · . (15)

Therefore, the velocity defect does not change its order of magnitude. One then
concludes that, by specifying χ(s) in (13) in accordance with (12), the small-defect
formulation represents an inadequate description of a turbulent boundary layer ap-
proaching smooth separation. Note, that the same conclusion can be drawn for
turbulent separation at a trailing edge under angle of attack, where the external
velocity admits a square-root behaviour akin to (12). More generally spoken, (15)
holds if ue admits a finite limit according to (13). We add that it has been demon-
strated numerically in [8] that even in case of a rather sharp step-like decrease of
ue(s) the velocity defect characterised by F0, T0, and ∆0, remains bounded.

Summarising, it is possible to give a rather comprehensive answer to an interest-
ing question raised by Degani [2], namely, how the small-defect structure responds
to different limiting forms of ue(s) as s → 0−: apparently, the only scenario that is
compatible with a change of magnitude of the velocity defect, as it is required for
an asymptotic description of separation, is that of a boundary layer approaching a
stagnation point of the (otherwise attached) flow in the inviscid limit ν = 0. This
is exactly the picture of separation originally proposed by Neish and Smith [5].
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2.2. Flow in the Vicinity of a Rear Stagnation Point

Close to a rear stagnation point, see Figure 1 (b), the potential flow is linearly
retarded as u ∼ −c s, v ∼ c n, where s, n → 0 and c is a positive constant. Then
ue ∼ −cs, in contrast to (13). Substitution of this relationship into (10) and (11)
then predicts a growth of both the boundary layer thickness and the velocity defect,
as expressed by (14). Specifically,

∆0 ∼ D[− ln(−s)]1/2
/

(−s), ϕ = D
/{

2[− ln(−s)]1/2 (−s)2
}

, s → 0−, (16)

where D again is a positive constant, cf. [5, 2]. It then follows from (16) that (10)
reduces to the equation η G′(η) = R(η) for η = O(1). Since (16) is incompatible with
the inhomogeneous boundary conditions (9b) required by the match with the viscous
wall layer, on top of the latter a sublayer where η = O(ϕ−2) has to be introduced.
However, as that flow region appears to behave passively with respect to the further
analysis, it is disregarded here.

As a consequence of the growth of ∆, see (16), the boundary layer approximation
ceases to be valid close to the stagnation point S when the distance −s and δ are
of comparable magnitude. From (8) it then follows that this region is characterised
by suitably rescaled coordinates (X,Y ) = (s, n)/τ , where τ = (Dγ)1/2[−(ln γ)/2]1/4.
The resulting asymptotic splitting of the flow is depicted in Figure 2 (a). In the new
‘square’ domain II of extent τ the flow quantities are expanded in the form

[

u

cτ
,

v

cτ
,
p − pS

(cτ)2

]

∼

[

−X,Y,
X2 + Y 2

2

]

+
1

ln γ
[∂Y Ψ,−∂XΨ, P ] + O

[

1

ln2 γ

]

, (17)

where pS is the (time-mean) pressure in S. Here the magnitude of the velocity defect
is still asymptotically small and varies only logarithmically with γ. As an impor-
tant implication, the presence of the logarithmic terms in (16) is seen to prevent
the Reynolds stresses, which are of O(τ 2/ ln2 γ), to affect even the perturbed flow
in leading order. Indeed, substitution of (17) into the momentum equation (4b)
shows that the perturbation stream function Ψ(X,Y ) and the pressure disturbance
P (X,Y ) satisfy the Euler equations, linearised about the stagnant potential flow,

∂X(X ∂Y Ψ) − Y ∂Y Y Ψ = −∂XP, −X ∂XXΨ + ∂Y (Y ∂XΨ) = −∂Y P. (18)

By introducing the vorticity Ω = (∂XX + ∂Y Y )Ψ , elimination of P in (18) yields the
vorticity transport equation, (X∂X − Y ∂Y )Ω = 0. Finally, integration gives

(∂XX + ∂Y Y )Ψ = Ω(−XY ). (19a)

The match with the oncoming boundary layer flow according to (14), (16), and (17)
fixes both the vorticity Ω and the boundary conditions supplementing (19a),

Ω = G′′(η), η = −XY, (19b)

Ψ(X, 0) = 0, (19c)

Ψ ∼ G(η)/X2, η = O(1), X → −∞. (19d)

Also, the reuse of the boundary layer coordinate η introduced before in (19b) shows
that the edge n = δ of the turbulent flow region II here is given by δ ∼ τ/X, see

7



B. SCHEICHL, A. KLUWICK

(a) (b)
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δ
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Figure 2. (a) Asymptotic flow splitting near rear stagnation point S: oncoming boundary
layer I with emerging sublayer I’, resulting ‘square’ region II with sublayer II’ (not con-
sidered in text), viscous wall layer III, separating streamline S of the stagnant potential
flow; the dotted lines indicate the connection to the regions not considered in the analysis.
(b) Smooth inviscid separation from a (here symmetrical) cylindrical body for different
values of k in (12); note the flow showing a cusp-shaped closed cavity which neighbours
the attached flow characterised by a rear stagnation point S.

Figure 2 (a). Stated equivalently, the curve XY = η ∼ 1 disjoins the turbulent from
the (approximately) irrotational external region as Ω = 0 for η ≥ 1.

We seek a solution of the Poisson problem (19) for Ψ for X < 0, Y ≥ 0. That
is, in the present investigation we do not take into account the ‘collision’ of the
oncoming flow with that approaching S for s → 0+, cf. Figures 1 (b) and 2 (a). We
set Ψ = Ψp + Ψh, where Ψp(X,Y ) is a particular solution of (19a)–(19c) and the ho-
mogeneous contribution Ψh(X,Y ) satisfies Laplace’s equation, (∂XX + ∂Y Y )Ψh = 0,
subject to (19c). By defining G(−η) := −G(η), η ≥ 0, and using standard methods,
one obtains after integration by parts and some manipulations

Ψp =
1

2π

∫

1

−1

G′(η)

∫

∞

0

σY − η

σ2(X − σ)2 + (σY − η)2
dσ dη. (20)

The function Ψp(X,Y ) is found to vary with R−2 for R2 = X2 + Y 2 → ∞ and fixed
values of ϑ = arctan(Y/X). On the other hand, Ψp ∼ H(η)/X2 for X → −∞ where
η and, in turn, the function H(η) (which is not stated explicitly here) are kept fixed.
Since H 6≡ G, however, Ψh(X,Y ) must behave as

Ψh ∼ [G(η) − H(η)]/X2, X → −∞, η = O(1), (21)

such that Ψ satisfies (19d). An asymptotic investigation of Laplace’s equation then
shows that Ψh ∼ R−2[A cos(2ϑ) + B sin(2ϑ)], where A and B are constants, is the
only possible behaviour for R → ∞. Unfortunately, this relationship does not meet
the required match with (21) as ϑ → π−, X → −∞. Thus, the problem (19) has
no solution. Therefore, the asymptotic picture of separation taking place close to a
rear stagnation point, as proposed in [5], must be regarded as at least questionable.

The formal inconsistency outlined before was not addressed by Neish and Smith [5].
Apparently, this is due to the neglect of the logarithmic terms in (16) in their dis-
cussion of the match with the ‘square’ region II. In turn, they propose a vortex
flow there which exhibits a velocity defect relative to the stagnating external flow
of O(1), in striking contrast to the expansion (17). Consequently, in [5, 2] both
the magnitude of the velocities and the extent of the emerging region II are of γ1/2.
Thus, the flow there is governed by the full Reynolds equations (1), rather than their
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linearised form (18). It is that fully nonlinear stage which prompted the authors of
[5, 2] to conclude that separation would occur a distance of O(γ1/2) upstream of S.
Also, it is not explained in these papers how the flow region II is transformed into
a turbulent shear layer along the separated streamline S, which then coincides with
the Y -axis, see Figure 2 (a).

A further uncertainty is raised by another issue put forward in [5]: it is argued
that the position of smooth flow detachment approaches the rear stagnation point if
one considers the limit k → ∞ in (12). The flow situation for different values of k is
sketched in Figure 2 (b), cf. [1]: from a topological point of view, the only candidate
for a flow exhibiting free streamlines around a cylindrical body that neighbours the
completely attached potential flow with a rear stagnation point S is the one which
embeds a vanishingly small interior (cusp-shaped) cavity/eddy in the vicinity of S.
However, it has not been demonstrated convincingly so far that such a solution is
associated with correspondingly large values of k. We note that the class of inviscid
flows having free streamlines is currently under investigation.

3. The Large-Defect Boundary Layer and Smooth Separation

The picture of separation considered in [5, 2] is apparently not in accordance with
experimental findings. In fact, separation from a cylindrical body takes place a
relatively short distance downstream of the location of its maximum cross-section,
even for very large values of Re. This finding, together with the serious difficulties
discussed in the previous section, then strongly suggests to abandon the assumption
of a small-defect boundary layer in favour of a flow description where a streamwise
velocity deficit of O(1) is stipulated. As outlined in the introduction, such an asymp-
totic concept that (i) surmounts the difficulties in the matching procedure due to
the logarithmic velocity distribution (5) encountered in Sychev’s theory [11, 12],
and (ii) is corroborated by any commonly used turbulence closure, has already been
proven successful in the description of turbulent marginal separation, see [7, 6].

In this novel flow description the boundary layer thickness δ is measured by a
small parameter α which is independent of Re as Re → ∞. This most remarkable
characteristic anticipates the existence of a turbulent shear layer of finite width with
a wake-type flow, even in the formal limit α → 0, ν = 0, included in (1). In that
limit the unsteady flow in the wake region is presumably not affected significantly
by the periodically occurring well-known wall layer bursts. As will turn out, this
characteristic allows for an investigation of some properties associated with the
unsteady motion on the basis of (2).

3.1. The Slender-Wake Limit

In the wake region the Reynolds stresses are quantities of O(α). Then the nonlin-
earities in the momentum equation (2b) suggest the expansions

[u, v, w, p] ∼ [u0, 0, 0, p0](s,N) + α1/2 [u′

1, v
′

1, w
′

1, p
′

1](t, s,N, . . .)

+ α
{

[u2, v2, 0, p2](s,N) + [u′

2, v
′

2, w
′

2, p
′

2](t, s,N, . . .)
}

+ O(α3/2), (22a)

δ/α = δ0(s) + O(α2). (22b)
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In (22a) a suitable shear layer coordinate N = n/α is introduced and the dots indi-
cate dependences on inner spatial and time scales, which are specified later. Insert-
ing (22) into (4) then gives rise to the shear layer approximation

p0(s,N) = p0(s), −dp0/ds = ue due/ds, (23a)

∂su0 + ∂Nv2 = 0, u0 ∂su0 + v2 ∂Nu0 = −dp0/ds − ∂N(u′

1v
′

1). (23b)

The equations (23a) and (23b) govern the turbulent motion along the separating
streamline S to leading order sufficiently far from S, i.e. for |s| = O(1), see Fig-
ure 1 (a). They are subject to the wake-type boundary conditions

v2(s, 0) = u′

1v
′

1(s, 0) = 0, u0

(

s, δ0(s)
)

− ue(s) = u′

1v
′

1

(

s, δ0(s)
)

= 0. (23c)

By excluding the apparent trivial solution u0 ≡ ue(s), v2 ≡ u′

1v
′

1 ≡ 0, which implies
a velocity defect of o(1), we seek non-trivial solutions u0, v2, δ0 of (23) with respect
to separation. To this end, it is useful to consider (23b) and (23a) evaluated for
N = 0,

d(u2

s − u2

e)/ds = −2
[

∂N(u′

1v
′

1)
]

(s, 0). (24)

Herein us(s) = u0(s, 0) again denotes the slip velocity. Note, that separation is
associated with flow reversal further downstream, which, in turn, requires us(0) = 0.
To gain first insight how the boundary layer behaves as s → 0−, the problem (23)
has been solved numerically, by adopting the same algebraic shear stress closure
that was employed successfully for the boundary layer calculations in [7].

We again discard the possibility that the impressed potential flow exhibits a
rear stagnation point S, since inspection of (24), confirmed by the numerical study,
shows that then us not necessarily approaches zero in the vicinity of S. Therefore,
the picture of a ‘collision’ of two boundary layers is apparently not appropriate for
describing turbulent separation. Consequently, separation is seen to be associated
with a smoothly separating inviscid flow, according to the situation sketched in
Figure 2 (b). As outlined in [1], only flows having k ≥ 0 are topologically possible.
A suitable model for the surface velocity ue(s) that exhibits the then required local
behaviour (12) is given by ue(s) = (3/2 + s)m[1 + k(−2s)1/2]/(1 + k), −1/2 ≤ s < 0,
such that ue(−1/2) = 1. Here the exponent m represents an eigenvalue of the self-
preserving solution for a given value of us(−1/2), which serves as the initial condition
for the downstream integration of (23), cf. [7]. Specifically, the value us(0) = 0.95 has
been imposed, yielding m

.
= −0.3292. The distributions for the impressed adverse

difference pressure p0(s) − p0(0) and the resulting slip velocity us(s) are plotted
in Figure 3 for different values of the control parameter k. It is found that for
sufficiently small values of k the integration terminates in a singular manner at
s = 0 where us assumes a finite limit, i.e. us(0) > 0. For increasing values of k this
threshold decreases, such that it finally vanishes for a critical value of k, say, k = kc.
We note that near k = kc the numerical calculations are very sensitive to slight
variations in the value of k; for the specific choice of ue(s) adopted here one finds
that kc

.
= 2.7. For k > kc, however, the solution admits a Goldstein-type singularity

at a position upstream of s = 0 which is discussed in more detail in [7]. Here we add,
that a thorough analytical study of the numerically observed singular behaviour of
the boundary layer solutions, also expressed through (24), is a task of the current
research.

10
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Figure 3. Local distributions of ∆p0 = p0(s) − p0(0) and us(s) for k = 1.5, k = 2.7
.
= kc,

and k = 3.4; the circles indicate the occurrence of singular points.

As a first, rather remarkable, result, the location of turbulent break-away sepa-
ration in the double limit α = ν = 0 is seen to be associated with a positive, pre-
sumably single-valued, value kc of k, which has to be found by means of iterative
boundary layer calculations. This strikingly contrasts its laminar counterpart, where
the so-called Brillouin-Villat condition fixes the position of inviscid flow detachment
by the requirement k = 0, see [10, 9]. Furthermore, the downstream shift of that
point for increasing values of k, sketched in Figure 2 (b), explains why, in general,
turbulent separation from a cylindrical body takes place further downstream as it is
the case when the flow is still laminar. Moreover, first investigations indicate that
in the turbulent case the more precise determination of the location of separation
for small but finite values of both α and ν is determined by a locally strong rota-
tional/irrotational interaction mechanism, analogous to that proposed in [11, 12].

3.2. Internal Structure ‘Derived’ from First Principles

As a starting point, we consider the well-known transport equation for the specific
time-averaged turbulent kinetic energy k = u

′ ·u′/2, which results from Reynolds-
averaging the inner product of u

′ with (2b) by substituting (2a),

Dt k + ∇ · (k + p′)u′ − ν ∆k + εp = −u′u′ :∇u, εp = ν ∇u′ :∇u′. (25)

Herein εp is commonly referred to as turbulent (pseudo-)dissipation. By taking into
account (22), the least-degenerate shear layer approximation of (25) in the double
limit α → 0, ν → 0 is found to be

∂N(p′1v
′

1) + εp ∼ −u′

1v
′

1 ∂Nu0. (26)

We integrate (26) across the shear layer thickness, i.e. from N = 0 to N = δ0. Then
the net contribution of the diffusive term on the left-hand side of (26) is seen to
vanish, whereas the resulting net turbulent ‘production’ on the right-hand side is
positive and of O(1) since both the Reynolds shear stress −u′

1v
′

1 and the shear rate
u0,N are apparently non-negative. Remarkably, then εp is a quantity of O(1) in the
formal limit ν = 0.

The quantity εp is obtained by Reynolds-, or equivalently, time-averaging accord-
ing to (3), the stochastically varying quadratic form ∇u

′ :∇u
′. By adopting the very

weak assumption that the averaging process leaves its magnitude of unchanged, we

11
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find, with some reservation, that

∇u
′ = O(ν−1/2) (27)

holds for the predominant fraction of intervals of the time t. As the most simple
description of the fluctuating motion, we next assume that the turbulent fluctua-
tions are governed by a single spatial ‘micro scale’, denoted by λ (together with a
correspondingly small time scale) apart from the ‘macro scales’, represented by a
streamwise length of O(1) and the shear layer thickness of O(α). It then follows
from the estimate (27) in combination with (22) that appropriate ‘micro variables’
are given by (t′,x′) = (t,x)/λ where x

′ = (s′, n′, z′) and λ = (να)1/2. That is, the
smallest scales are measured by λ. Interestingly, they are asymptotically larger
than the (non-dimensional) celebrated Kolmogorov scale which is commonly associ-
ated with the dissipative small-scale structure of turbulence and given by (ν3/εp)

1/4.
Hence, the equations of motion (2) are expanded in the sequence of ‘inviscid’ linear
equations

∇′ · u′

i = 0, (28a)

D′

t u
′

i + N
′

i−1 = −∇′p′i, N
′

0 = 0, D′

t = ∂t′ + u0(s,N) ∂s′ . (28b)

Here and in the following i = 1, 2, . . ., u
′

i = (u′

i, v
′

i, w
′

i), and ∇′ denotes the gradient
with respect to x

′. The inhomogeneous terms N
′

i in (28b) are defined by expanding
the nonlinear convective operator in (2b) according to (22),

(u · ∇′ − u0 ∂s′)u
′ ∼ α1/2

N
′

1 + αN
′

2 + · · · . (28c)

Then the vector N
′

i depends on the velocity fluctuations u
′

j where j = 1, 2, . . . , i.
By eliminating the pressure fluctuations p′i in (28b), the vorticity fluctuations ω

′

i are
seen to satisfy the equations

D′

t ω
′

i = −∇′ × N
′

i−1, ω
′

i = ∇′ × u
′

i. (28d)

Thus, D′

t ω
′

1 = 0, so that ω
′

1 depends on the ‘micro variables’ ξ′ = s′ − u0 t′, n′,
and z′, but not explicitly on t′. In principle, u

′

1 then can be calculated from its
Helmholtz decomposition, given by the distribution of ω

′

1 together with the vanishing
divergence as expressed by (28a). Therefore, u

′

1 and, in turn, N
′

1 also show no
explicit dependence on t′, giving ω

′

2 = C
′ − (∇′ × N

′

1)t
′, where C

′ is a ‘constant’
of integration. The requirement that expansion (22) must be uniformly valid with
respect to the ‘micro time’ t′ then gives rise to the solvability condition ∇′ × N

′

1 = 0.
As a result, one recursively finds that D′

t ω
′

i = 0 in general, such that the velocity
and pressure fluctuations u

′

i and, p′i, respectively, depend on ξ′, s′, n′, and z′, but,
most important, not explicitly on t′, and are determined by

∇′ × N
′

i = 0, ∇′p′i = −N
′

i−1. (29)

Equations (29) describe a stationary motion with respect to ξ′, i.e. in a frame of
reference which moves with the time-mean streamwise velocity u0(s,N) along the
separating streamline S of the flow in the formal limit ν = 0, see Figure 1 (a). Note,
that they comprise the full nonlinear steady Euler equations, satisfied by u

′

1 and p′2.
That transport of the stochastic fluctuations along with the the time-averaged

flow found from the ‘micro-scales’ analysis is commonly termed as ‘coherent motion’.
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As a further consequence of those considerations, the process of time-averaging
according to (3) is seen to provide a filtering of the fluctuating motion with respect
to ξ′ and, in turn, rather not only with respect to the ‘micro time’ t′ but also to the
streamwise ‘micro variable’ s′. The view that the statistically stationary turbulent
flow depends on the spatial ‘macro variables’ s and N only is, therefore, supported by
an asymptotic investigation of the Navier–Stokes equations (2) and time-averaging.

The relationships (28) are valid for i < I where the index I signifies contribu-
tions to (22) of O(ν1/2). For i = I it follows from (2) that the dynamics of these
contributions are affected by the viscous term on the right-hand side of (2). Also,
the normal gradient ∂Nu0 then enters the momentum balance as a consequence of
the ‘macro scale’ α which describes the time-mean shear layer approximation. This
in turn suggests the introduction of a further set (tα,xα) = (t,x)/α of ‘micro vari-
ables’. Let ∇α denote the gradient with respect to x

α and es, en, and ez the unit
vectors in the respective directions indicated by the subscripts. We then find

∇′ · u′

I = −∇α · u′

1, (30a)

D′

t u
′

I + N
′

I−1 + Dα
t u

′

1 + esv
′

1 ∂Nu0 = −∇′p′I −∇αp′1 + ∆′
u

′

1,

Dα
t = ∂tα + u0(s,N) ∂sα , ∆′ = ∇′ · ∇′. (30b)

From (29) it follows that p′1 is independent of x
′ since N

′

0 vanishes according to (28b).
By taking the curl with respect to x

′ one then obtains from (30b)

D′

t ω
′

I = −∇′ × N
′

I−1 − Dα
t ω

′

1 − (∂Nu0)(en∂z′ − ez∂n′)v′

1 + ∆′
ω

′

1. (30c)

The right-hand sides of both (30c) and (30a) do not explicitly depend on t′. With the
same arguments leading to (29), then the Helmholtz decomposition of ω

′

I suggests
that u

′

I and, as a consequence of (30b), p′I exhibit no explicit t′-dependence too. In
turn, the right-hand side of (30c) must vanish. Therefore, (30c) not only determines
the quantity u

′

I−1, but can also be interpreted as a linear transport equation for the
leading-order contribution ω

′

1 to the vorticity with respect to the newly introduced
time tα and x

′. However, the motion which is affected by the viscous term in (2) is
presumably also governed by convective terms which are nonlinear in the leading-
order contribution u

′

1 to the velocity fluctuations. But, in view of (30b), this is only
possible by introducing a set of ‘intermediate micro variables’ (t̂, x̂) = (t,x)/α3/2.
Thus, the associated new length scale of O(α3/2) is much larger than the viscosity-
affected one, λ, but still smaller than the shear layer thickness of O(α). We close
the analysis by noting that this new length scale serves as a measure for the size of
the large eddies in the wake region, and, in turn, of the mixing length. This fully
agrees with the scaling of the latter found from the time-mean analysis, cf. [7].

4. Conclusions and Further Outlook

We have demonstrated that turbulent bluff-body separation requires a streamwise
velocity defect of O(1) as Re → ∞ in the fully turbulent main region of the oncoming
boundary layer, as the classical assumption of a small velocity deficit is intrinsically
tied to the idea of a firmly attached external potential flow, and, in turn, leads to a
serious inconsistency in the asymptotic hierarchy of the flow, which originates from
an asymptotically small vicinity of the rear stagnation point. On the other hand, for
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the large-defect boundary layer the limiting inviscid solution must be sought in the
class of flows exhibiting a free streamline which departs smoothly from the surface.
As one remarkable result strikingly contrasting a well-known finding in the theory of
laminar separation, here the Brillouin-Villat condition is not met at the separation
point. The formulation of the locally strong rotational/irrotational interaction of
the separating flow with the external bulk flow is a topic of the current research.
Future research activities include, amongst others, the asymptotic investigation of
the unsteady motion. Most important, as a first step in this direction, it has been
shown here how the underlying boundary layer concept is strongly supported by
such an analysis. As one physically appealing result, an inner length of O(α3/2)
reflecting the size of the large-scale eddies in the wake flow regime is found, which
interestingly equals that of the mixing length given in [7].
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