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Abstract. The incompressible 2D flow over a flat plate with and without incidence is studied
in respect of the propagation of spatial mode disturbances, by solving the unsteady Navier-Stokes
equations. The solutions are compared with a theoretical analysis providing an analytical uniformly
valid approach. The effect of the flow disturbances is studied by analytical and the numerical
approaches.
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1. Introduction

Following the ideas of Libby and Fox [7], a theoretical analysis of algebraic distur-
bances evolving spatially in the Blasius flow is lead. These disturbances, searched
as self similar two-dimensional disturbances in the boundary layer, are built in the
whole flow domain with the asymptotic method of the matched expansions for high
Reynolds numbers. They are sought as a product of functions of power of x and
functions of the similarity variable. For particular case without incidence of the
Blasius flow, the first two-dimensional mode, named Stewartson mode, is retrieved.
This asymptotic method, previously used in order to obtain a uniformly valid ap-
proximation for the mean Falkner-Skan flow [9], allows taking into account to the
non-parallel effects of the disturbed flow and ensures the irrotationnality of the flow
outside the boundary layer. The good agreement between numerical and theoretical
solutions has been proved earlier [10]. An extension of this method to the disturbed
flow is presented in this paper ; it allows putting in evidence generic disturbances
of this flow.

2. 2D disturbances over a flat plate

The uniformly valid disturbed solution over a flat plate

In this section, we consider a viscous bidimensional incompressible flow perturba-
tions over a flat plate with an incidence angle ϕ. We are interested particularly in
the uniformly valid perturbed solution provided in [11]. By introducing the param-
eter ε = 1√

re
, one can write the semi-analytical solution for the wall-normal and
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streamwise velocity perturbation components (upth
,vpth

) and the pressure perturba-
tion (ppth

) in the form:

upth
= xλh′

n(η) + εAλ(
n − 1

2
− λ)ρλ−n+1

2 sin((λ −
n + 1

2
)θ)

vpth
= εxλ−n+1

2

[

1 − n

2
ηh′

n(η) + (
n − 1

2
− λ)(hn(η) − Aλ)

]

+εAλ(
n − 1

2
− λ)ρλ−n+1

2 cos((λ −
n + 1

2
)θ)

ppth
= εAλ(

n − 1

2
− λ)ρλ− 1−n

2 sin((
3n + 1

2
− λ)θ)

where n = ϕ

π−ϕ
, θ = arctan(y/x) , ρ =

√
x2 + y2 , η = 1

ε
x

n−1

2 y and hn(η) is a

similarity function which satisfies to the eigenvalue problem:

h′′′
n (η) +

(n + 1)

2
Fn(η)h′′

n(η) − (n + λ)F ′
n(η)h′

n(η) + (λ −
n − 1

2
)F ′′

n (η)hn(η) = 0

with boundary conditions:

hn(0) = 0 ; h′
n(0) = 0 ; lim

η→∞
h′

n(η) = 0 ; lim
η→∞

hn(η) = Aλ ; h′′
n(0) = 1

λ is the eigenvalue associated to the eigenfunction hn(η), Aλ is a constant who
depends on the numerical solution of the problem and Fn(η) is the Falkner-Skan
function solution of the problem:

F ′′′
n (η) +

(n + 1)

2
Fn(η)F ′′

n (η) + n(1 − F 2

n(η)) = 0

with boundary conditions:

Fn(0) = 0 ; F ′
n(0) = 0 ; lim

η→∞
F ′

n(η) = 1

In Figure 1, we show the theoretical streamwise and wall-normal velocity perturba-
tion profiles for the first mode versus the incidence angle ϕ at x=6 with a Reynolds
number equal to 1000. These more realistic solutions are used when analysing the
destabilisation of the flow, especially under the adverse pressure gradient effects of
high incidence.
A numerical method to solve the Navier-Stokes equations of the disturbed flow in

the vicinity of the basic flow has been developed. The vorticity-stream function
formulation is used with a fourth-order compact scheme. The spatial discretisation
uses the finite differences scheme with an equal mesh size in each direction and
the temporal discretisation uses the Crank-Nicolson scheme which ensures an un-
conditional stability of the method. The resolution of the discretized equations is
done by the fractional temporal step formulation adopted in [1]-[3] with an alter-
nating implicit direction scheme. The method is second-order accurate in time and
fourth-order accurate in space. Dirichlet and Neumann boundary conditions have
been successfully tested, as well as a non reflecting outlet boundary condition [5].
Numerical tests have been performed on different problems such that the analytical
flow solution of a Green-Taylor vortex, the lid-driven cavity flow, the Falkner-Skan

2



2D DISTURBANCES OVER A FLAT PLATE

flow and compared to the analytical and benchmark solutions found in the liter-
ature [1]-[4]-[6]-[9]. This method is also adapted for the linearized Navier-Stokes
equations around the two-dimensional basic solution. The uniformly valid solution
provided in [9] is used for the basic flow. The equations are solved in the Cartesian
coordinates (x,y) in a semi-infinite domain [1,16]×[0,10] over the plate. The numer-
ical simulation allows capturing with a very good agreement the transient stages as
well as the steady-state reached solutions of the linearized (Figure 2)and non linear
Navier-Stokes equations. Other comparisons will be presented at the conference.
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Figure 1. Disturbance streamwise and wall-normal theoretical velocity profiles for the first
mode with various incidence angles ϕ at x=6. Re=1000 and grid mesh of 301 × 501
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Figure 2. Disturbance streamwise and wall-normal velocity contours of the theoretical
solution (solid) and the numerical solution (−−) that reached steady-state for an incidence
angle ϕ = −5. Re=1000 and grid mesh of 301 × 501

2D optimal disturbances

A well-known, the transition from laminar to turbulent flow is a critical process in
many engineering applications. We study the growth of bidimensional optimal dis-
turbances over a flat plate. The aim is to optimize the initial disturbance (uopt,vopt)
at xin = 1, the beginning of the interval, in order to achieve maximum possible am-
plification of the disturbance energy at xout = 16, the end of the interval. We define
the growth G over the interval xin ≤ x ≤ xout as the ratio between the disturbance
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energy E at the end and beginning of the interval:

G(xin, xout, Re) =
E(xout)

E(xin)
, E(x) = Eu(x) + Ev(x)

Eu(x) =
1

2

∫ ∞

0

u2(x, y)dy , Ev(x) =
1

2

∫ ∞

0

v2(x, y)dy

The calculations of the optimal disturbances are carried out with an adjoint-based
optimization procedure as in [2]-[8]. Figure 3 shows the wall-normal velocity pro-
file and the kinetic energy growth of the optimal disturbance associated with ini-
tial zero streamwise velocity component. The maximum growth obtained Gmax =
1.74.10−6Re at x = 1.42. The optimal disturbance is searched in a general way with
both streamwise and wall-normal velocity components, as shown in Figure 4. Pre-
liminary results give the maximum growth Gmax = 1.22.10−3Re at x = 1.37, which
is in the same order of the maximum growth found in a 3D optimal disturbances
study (Gmax = 2.2.10−3Re, [2]) and the streamwise velocity profil of 2D optimal
disturbance (Figure 4(a)) is similar to the spanwise velocity profil of the 3D optimal
disturbance found in [8].
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Figure 3. Wall-normal velocity profile (a) and kinetic energy growth (b) of the 2D optimal
disturbance in the case of initial zero streamwise velocity component. Re=1000 and grid
mesh of 301 × 501
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Figure 4. Streamwise and wall-normal velocity profiles (a) and kinetic energy growth (b)
of the 2D optimal disturbance. Re=1000 and grid mesh of 301 × 501
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3. Conclusions

A theoretical and numerical method is provided, allowing treating the problem of a
flow over a semi-infinite flat plate with and without incidence by using the Navier-
Stokes equations. The Navier-Stokes solver provided the time-marching solutions
and is able to compute unsteady separated flows. The main objective of this study
is to quantify the amplification of instabilities in this flow and their control. This
numerical method is adapted to solve the adjoint Navier-Stokes equations in order to
study the 2D optimal disturbances for this type of flows. Some preliminary results
are compared to existing benchmark solutions found in 3D optimal disturbances
studies.
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