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Abstract. Recent developments in the construction of airfoils and rotorblades are characterized
by an increasing interest in the application of so-called smart structures for active flow control.
These are characterized by an interplay of sensors, actuators, real-time controlling data processing
systems and the use of new materials e.g. shape alloys with the aim to increase manoeuvrability,
reduce drag and radiated sound. The optimal use of such devices obviously requires a detailed
insight into the flow phenomena to be controlled and in particular their sensitivity to external
disturbances. In this connection locally separated boundary layer flows are of special interest.
Asymptotic analysis of boundary layer separation in the limit of large Reynolds number Re → ∞
has shown that in a number of cases which are of importance from a practical point of view
solutions of the resulting interaction equations describing two-dimensional steady flows exist up to
a limiting value Γc of the relevant controlling parameter Γ only while two branches of solutions
exist in a regime Γ < Γc. The present study aims at a better understanding of near critical flows
|Γ − Γc| → 0 and in particular the changes of the flow behaviour associated with the passage of Γ
through Γc.

Key words: boundary layer theory, separation bubble, laminar-turbulent transition, Fisher’s
equation.

1. Introduction

Asymptotic analysis of high Reynolds number flows Re → ∞ has shown that there
exist at least two different routes leading to the formation of a separated flow region
inside an otherwise attached laminar boundary layer. Firstly, the presence of an
imposed adverse pressure gradient acting over a distance of order one on the typical
boundary-layer length scale may cause the wall shear to decrease and finally become
negative over a bounded distance before it recovers again. Examples of this so-called
marginal separation are provided by the leading edge separation on slender airfoils
at incidence, flow separation associated with the deflection of wall jets and flow
separation in channels enforced by suction. Secondly, a firmly attached laminar
boundary layer may be forced to separate due to the presence of a large adverse
pressure gradient acting over a short distance caused, for example, by a surface
mounted obstacle or the Kutta condition near the trailing edge of a slender airfoil.

Although these scenarios ultimately resulting in the formation of separated flow
differ vastly in detail they, nevertheless, share a number of common features. Most
important, it is found that a uniformly valid description of the flow behaviour close
to separation requires the investigation of three layers or decks having substantially
different properties. Viscosity plays a significant role inside a thin sublayer of the
oncoming boundary layer (the lower deck) only while the dynamics of the flow
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further away from the wall is predominantely inviscid. The main portion of the
boundary layer (main deck) primarily acts to transfer the displacement effects of
the low speed flow inside the lower deck to the region outside the boundary layer
(upper deck) and to transfer the resulting pressure response unchanged to the near
wall region. While the leading order upper and main deck problems can be solved
analytically, the study of the flow behaviour inside the viscous wall layer requires a
numerical treatment in general. Specifically, for the 1st route it is found that the
essential features of the lower deck region associated with marginally separated flows
are captured by the integro-differential equation

A2 − x2 + Γ = −λ

x
∫

−∞

1√
x − ξ





∂P (ξ, z, t)
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+

ξ
∫
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 dξ

−γ

x
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1
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∂(A − h)
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x
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−∞

vw

(x − ξ)1/4
dξ

(1)

where A(x, z, t) and P (x, z, t) denote the (negative) perturbation displacement thick-
ness and the pressure while the parameter Γ represents a measure of the angle of
incidence, the turning angle and the suction rate, respectively. Furthermore, x,
z and t denote Cartesian coordinates in the streamwise and spanwise directions
and the time while λ, γ, κ are positive constants. All quantities are suitably non-
dimensionalized and scaled. Finally, h(x, z, t) and vw(x, z, t) account for the effects
of controlling devices such as surface mounted obstacles and suction stripes.

In contrast, if boundary layer separation is approached along route 2 then the
boundary layer equations in incompressible form
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together with the matching and boundary conditions

u → y for x → −∞ ,

u → y + A − h , w → B(x, z, t)

y
, B = −

x
∫

−∞

∂p

∂z
dξ for y → ∞

u = w = 0 , v = vw at y = 0

(3)

have to be solved. Here u, v, w are the velocity components in x, y, z directions
where y measures the distance from the solid wall. To close the problems (1) and
(2), (3) a relationship P = F (A) between A and the induced pressure P is required
which is problem specific. Here we focus on incompressible flows where

P = −1

π

∞
∫

−∞

∞
∫

−∞

∂(A − h)(ξ, ζ, t)/∂ξ
√

(x − ξ)2 + (z − ζ)2
dξdζ . (4)
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Despite the fact that the form of the interaction law P = F (A) depends on the
specific problem under consideration, marginally separated flows exhibit a number
of properties which appear to be universal. Most important, in all known cases of
marginal separation it is found that two-dimensional steady state solutions exist
up to a critical value Γc of Γ only and that inside a range of values Γ < Γc the
problem is non-unique and admits two branches of solutions. As a specific example,
Fig. 1 displays A(0) versus Γ for uncontrolled incompressible flow h = vw = 0
past the leading edge of a slender airfoil at incidence first studied by Ruban [17]
and independently by Stewartson et al. [20] where Γc ≈ 2.66. Interestingly, similar
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Figure 1. Fundamental curve of marginal separation; dashed line: local solution of classical
boundary layer theory (asymptote for Γ → −∞), dotted line: parabola approximation
near the bifurcation point, see §2.1.

phenomena are known to occur also in situations where a fully attached boundary
layer separates due to rapid changes of the boundary conditions, e.g. subsonic trailing
edge flow, Korolev [14], supersonic flow past flared cylinders, Gittler and Kluwick
[10].

The nonexistence of steady two-dimensional solutions to equations (1) or (2),
(3) supplemented with the interaction relationship P = F (A) if the relevant con-
trolling parameter exceeds a critical value raises a number of questions concerning
the changes of the flow behaviour associated with its transition from sub-critical
to super-critical values, e.g. Braun and Kluwick [4]. Their answer requires the in-
vestigation of unsteady, three-dimensional effects which poses an extremely difficult
numerical task. To the authors knowledge it has been attacked so far for marginally
separating flows only where Smith [19], Ryzhov and Smith [18], Elliott and Smith
[7] noted that the evolution of unsteady two-dimensional disturbances above Γc in-
evitably lead to the formation of finite time singularities. Probably the most detailed
calculations based on the Navier–Stokes equations have been carried out by Alam
and Sandham [1] for the specific case of a channel flow designed such that boundary
layer separation on the lower wall is enforced by the pressure increase resulting from
suction at the upper wall. The results indicate that the flow inside the separation
bubble becomes increasingly sensitive to disturbances as the suction rate increases
ultimately leading to bubble bursting and, if the suction rate is sufficiently high, to
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repeated bubble bursts in the form of self-sustained oscillations. Also, it is found
that a transition from laminar to turbulent flow then occurs near and downstream
of reattachment which is characterized, among others, by the formation of Λ-type
vortices, Fig. 2, which is supported also by experimental evidence. Obviously, one
then is confronted with the question if and how the singularities predicted by the
asymptotic theories for Re → ∞ are related to flow structures for large but finite
Reynolds number and how much of the dynamics emerging from Navier–Stokes cal-
culations can be captured by considering truly unsteady, three-dimensional effects
described by (1) or (2), (3).

z

x

y

mean

mean

sep.

reatt.

Figure 2. Instantaneous contours of the span-wise vorticity component ωz = ∂v/∂x −
∂u/∂y, [1]. Λ-vortex structures within the time mean separated region are associated
with the generation of moving singularities (cyan lines) immediately after blow-up events.

2. Bifurcation analysis of near critical flows

2.1. Route 1 towards separation

As noted by Braun and Kluwick [2], [3], [4] the treatment of marginally separated
flows simplifies considerably if Γ differs only slightly from Γc or, more precisely, by
focussing on the limit ε = |Γ − Γc|1/4 → 0. Appropriate expansions of A, h, and vw

then are

A = A∞c(x) + ε2a1(x, z̄, t̄) + ε4a2(x, z̄, t̄) + . . . ,

h = h∞(x) + ε4h1(x, z̄, t̄) + . . . ,

vw = vw∞ + ε4vw1(x, z̄, t̄) + . . .

(5)

Here z̄ = εz, t̄ = ε2t and the subscript ‘∞c’ refers to steady two-dimensional critical
flow conditions. Introducing the abbreviations

I· = λ

∞
∫

X

1√
ξ − X

∂2
·

∂ξ2
dξ , J· = λ

∞
∫

X

· dξ√
ξ − X

, K· = γ

X
∫

−∞

· dξ

(X − ξ)1/4
, (6)
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substitution of expansions (5) into (1) and (4) yields (2A∞c−I)a1 = 0. Consequently,
a1 = b(x) c(z̄, t̄) where b(x) denotes the right eigenfunction of the singular operator
(2A∞c − I):

(2A∞c − I)b = 0 . (7)

Solutions of the equation for a2

(2A∞c − I)a2 = sgn(Γc − Γ ) − b2c2 +
Jb

2

∂2c

∂z̄2
− Kb

∂c

∂t̄
− Ih1 −

κ

γ
Kvw1 (8)

exist only if Fredholm’s alternative is met, i.e. if the yet unknown ‘shape’ function
c(z̄, t̄) satisfies the evolution equation

∂c

∂t̄
− ν

∂2c

∂z̄2
+ µc2 − sgn(Γ − Γc)δ = ḡ . (9)

The constants ν, µ, δ and the function ḡ which accounts for the effects of controlling
devices are uniquely defined in terms of b(x) and the left eigenfunction n(x): (2A∞c−
I)∗n = 0. Here (2A∞c − I)∗ denotes the adjoint of (2A∞c − I). Using the notation
〈n, q 〉 =

∫

∞

−∞
nq dx one obtains:

ν =
〈n, Jb 〉

2〈n, Kb 〉 , µ =
〈n, b2 〉
〈n, Kb 〉 , δ =

〈n, 1 〉
〈n, Kb 〉 , ḡ = −γ〈n, Ih1 〉 + κ〈n, Kvw1 〉

γ〈n, Kb 〉 .

(10)

Numerical results for A∞c(X), b(x) and n(x) with h∞ = vw∞ = 0 are displayed in
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Figure 3. Near critical marginally separated flows (h∞ = vw∞ = 0): (negative) perturba-
tion displacement thickness A∞c(X), right and left eigenfunctions b(X) and n(X).

Fig. 3 and yield: ν ≈ 3.0, µ ≈ 2.07, δ ≈ 1.60. If Γ < Γc stationary points of (9)

satisfy c = ±cs, cs =
√

δ/µ and correspond to upper and lower branch solutions
for below critical flow conditions, Fig. 1. Finally, by applying the transformation
c(z̄, t̄) + cs = 2cs u(z, t), z̄ =

√

ν/(2µcs) z, t̄ = t/(2µcs), g = ḡ/(4δ) equation (9)
assumes the parameter free form

ut − uzz = u − u2 − Θ(Γ − Γc)/2 + g(z, t) (11)
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known as the forced Fisher-Kolmogoroff, Petrovsky, Piscounoff (FKPP)-equation,
eg. Fisher [8]. Here Θ(s) denotes the Heavyside function Θ = 0 for s < 0 and Θ = 1
for s > 0.

2.2. Route 2 towards separation

The main ideas associated with the bifurcation analysis of marginally separated
flows carry over unchanged although the details are considerably more complicated.
To be specific, we consider the case of incompressible flow past an expansion ramp
with ramp angle α and slightly rounded corner h∞(x) = α(x +

√
x2 + r2), r ≪ 1.

Generalizing equations (5) we now expand as

[u, v] = [u∞c, v∞c] (x, y) + ε2 [u1, v1] (x, y, z̄, t̄) + ε4 [u2, v2] (x, y, z̄, t̄) + . . .

[P, A] = [p∞c, A∞c] (x) + ε2 [P1, A1] (x, z̄, t̄) + ε4 [P2, A2] (x, z̄, t̄) + . . .

w = ε3w1(x, y, z̄, t̄) + . . .

B = ε3B1(x, z̄, t̄) + . . .

[h, vw] = [h∞, vw∞] (x) + ε4 [h2, vw2] (x, z̄, t̄) + . . .

(12)

where ε = |α − αc|1/4 and as before z̄ = εz, t̄ = ε2t. Steady two-dimensional flow

 0

 5

 10

 15

 20

-6 -5.8 -5.6 -5.4 -5.2 -5 -4.8α
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Figure 4. Non-uniqueness of the planar ramp flow: bubble length lb versus ramp angle α
for r = 0.1 and vw∞ = 0: αc ≈ −5.926, source: Zametaev (2003, private communication).

fields have been computed first by Korolev [15] for r = 0 who found that numerical
solutions cannot be obtained for α > αc while two branches of solutions exist for
0 ≤ α ≤ αc, Fig. 4. Similar to marginally separated flows deviations from the critical
two-dimensional steady state but now characterized by the perturbations of the
two velocity components u, v and the perturbation displacement function −A and
expressed in terms of the vector ~r T

1 = (u1, v1, A1) can be written as ~r1(x, y, z̄, t̄) =
c(z̄, t̄)~r (x, y). Here ~r T (x, y) = (ur, vr, Ar) represents the right eigenvector of a

6



Near critical phenomena in laminar boundary layers

singular operator matrix M which depends on the unperturbed flow quantities only:

M~r =













uc∂x + ucx + vc∂y − ∂yy ucy
1

π
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∞
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∂x ∂y 0
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ur
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= ~0 . (13)

As before the ‘shape’ function c(z̄, t̄) remains arbitrary at this level of approximation
and is determined by the requirement that solutions for the higher order approxi-

mations u2, v2, A2 exist. Introducing the left eigenvector ~l T (x, y) = (m, n, q) of M
the resulting solvability condition assumes the form

∂c

∂t̄

∫

D

mur dD + c2

∫
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m(ururx + vrury) dD +
∂2c
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)
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∞
∫

−∞

n0vw2 dx .

(14)

which is again recognized as an equation of Fisher type. The quantity wr accounts
for cross flow effects via the relationship w1 = wr(x, y)∂c/∂z̄ and is obtained as the
solution of

uc
∂wr

∂x
+ vc

∂wr

∂y
= pr +

∂2wr

∂y2
,

y = 0 : wr = 0 , y → ∞ : wr ∼ −1

y

x
∫

−∞

pr dξ with pr =
1

π
C

∞
∫

−∞

A′
r

x − ξ
dξ .

(15)

Numerical work in progress (Szeywerth, private communication) indicates that the
problems for the right and left eigenvectors have a unique solution and that the
integrals entering (14) exist which, therefore, can transformed into its canonical
form (11) which will be taken as the basis for the following discussion.

3. FKPP equation

Equation of Fisher’s type (heat equation with nonlinear source terms) are known
from nonlinear wave propagation phenomena in gene populations, reaction-diffusion
and heat conduction processes. Its appearance in the context of near critical flow
phenomena forms one of the key observations of the present study. In contrast to
previous applications where u(z, t) is limited to positive values within the range [0, 1]
or [0,∞) no restrictions on the magnitude and sign of u exist in cases which are
of interest here. As a consequence, the associated dynamics becomes considerable
more complicated and only first steps towards a full understanding have been taken.

3.1. 2-D unsteady flows

2-D unsteady flows where further analytical progress is possible provide a natural
starting point for a discussion of flow phenomena described by (11). In the case of
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unforced flow ḡ = 0 it reduces to Bernoulli’s equation which can be solved in closed
form for both sub- and super-critical flows

Γ < Γc : u(t) =
u0 + u0 tanh[(t − t0)/2]

1 + (2u0 − 1) tanh[(t − t0)/2]
, (16)

Γ > Γc : u(t) =
u0 + (u0 − 1) tan[(t − t0)/2]

1 + (2u0 − 1) tan[(t − t0)/2]
. (17)

Here u0 = u(t0) denotes the value of u imposed at time t = t0. According to (16)

-4

-2

 0

 2

 4

 0  1  2  3  4  5  6  7  8

u(t)

t

t∗

Figure 5. Solutions of (11) for unforced planar flow; sub-critical conditions Γ < Γc, (16);
dashed lines: steady states corresponding to upper and lower branch solutions; blow-up
time t∗.

the steady upper branch solution us = 1 is approached for initial conditions u0 > 0,
Fig. 5. In contrast, for u0 < 0 i.e. for u0 below the steady lower branch solution
us = 0, finite time blow-up occurs at the blow-up time

t∗ = t0 + 2 artanh [1/(1 − 2u0)] . (18)

Still, however, the steady upper branch solution us = 1 is approached in the limit
t → ∞.

No such steady state exists for super-critical flow where equation (17) predicts
periodic blow-up, i.e. self-sustained oscillations of the separation bubble.

The above interpretation of solutions to equation (11) is watertight if u remains
bounded for all times t ≥ t0 but hinges on tacit assumptions if finite time blow-up
occurs, namely (i) that u(t) can be extended beyond t∗ and (ii) that the singular
behaviour of u for t − t∗ → 0− causes a singular response of u for t − t∗ → 0+.
Although no rigorous proof of (i) and (ii) exists at present, their validity appears to
be supported by available numerical data and physical considerations. For example,
as mentioned before, DNS calculations for marginally separated channel flows carried
out by Alam and Sandham [1] predict that self-sustained bubble oscillations occur if
the suction rate α = V̇s/V̇1 where V̇1 and V̇s, respectively, denote the volume fluxes
at the channel entry and the suction strip is sufficiently large. Specifically, such
oscillations were observed in the range α = 0.2 ÷ 0.25 which is larger than but of
the same order of magnitude as the critical suction rate αc ≈ 0.09 predicted by the
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asymptotic approach which is encouraging. Also, if a singular behaviour of u(t) for
t− t∗ → 0− is accepted, conservation of mass immediately implies a related singular
behaviour for t − t∗ → 0+ which in turn ‘selects’ unique solutions (16), (17) for
arbitrary values u0.

Therefore, assumptions (i), (ii) will be adopted in the following considerations
dealing with more general situations as for example unsteady 2-D forced flow where
g(t) is taken to be purely harmonic g(t) = aΘ(t) sin ωt. Introduction of the trans-
formation u → R:

u(t) =
1

2

[

1 + ω
R′(t̄)

R(t̄)

]

, t̄ =
ω

2
t − π

4
(19)

then leads to the canonical form of Mathieu’s equation

R′′ + [p − 2q cos(2t̄)] R = 0 (20)

with p = −1/ω2 and q = 2a/ω2. Taking into account (19), blow-up solutions of (11)
are associated with zeros of solutions to (20) and multiple blow-up will be associated
with periodic solutions of (20). For p = a0(q0) this equation has an even 2π periodic
solution with no zeros R = c e0(t̄; q0) where c is a normalization constant. Using
the transformation R = c e0(t̄; q0) χ(t̄) application of the theorem of Leighton [16]
to the resulting equation for χ shows that repetitive blow-up occurs for Γ < Γc if
the forcing amplitude a > ac = q0ω

2/2 and is inevitable if Γ > Γc. Evaluation of
the relationship ac = ac(ω) as displayed in Fig. 6 together with its limiting form
ac ∼ ω/

√
2 as ω → ∞ shows that the danger of bubble bursting in sub-critical flows

decreases with increasing values of ω in agreement with experimental observations
(Ruban, private communication). Numerical solutions of (11) for Γ < Γc, ω = 2 and
two different values of a are depicted in Fig. 7 and seen to be in complete agreement
with the prediction following from the analytical result q0 ≈ 0.7268, ac ≈ 1.45216.
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ac(ω)

ω

Figure 6. Critical forcing amplitude for planar flow and g(t) = aΘ(t) sin(2t): a > ac leads
to repetitive blow-up; ac(0) = 1/4, ac(ω → ∞) ∼ ω/

√
2 + · · · (dashed line).
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Figure 7. Planar forced flow: numerical solutions of (11) with g(t) = aΘ(t) sin(2t). Re-
peated blow-up occurs for a > ac ≈ 1.45216.

3.2. Further analytical solutions of the FKPP equation

Closed form solutions of (11) without forcing can be obtained also in the case
of steady three-dimensional flow where it reduces to the integrated form of the
Korteweg-de Vries equation if Γ < Γc. Consequently, bounded solutions varying
periodically with z are given in terms of the Jacobian elliptic functions cn (s|m) and
the integration constant ϕ ∈ [0, π/3]:

u(z) = sin2
(ϕ

2

)

+
√

3 sin ϕ

[

1

2
− cn2

(
√

cos ϕ +
sin ϕ√

3

z

2

∣

∣

∣

∣

2 tanϕ√
3 + tan ϕ

)]

(21)

known from the theory of shallow water waves, Fig. 8(a). The limit ϕ = π/3 yields
the homoclinic orbit (solitary wave)

u(z) = 1 − 3

2
cosh−2

(z

2

)

, (22)

while in the limit ϕ → 0, which corresponds to a linearization about the unperturbed
planar steady state u = 0, one obtains (Stokes waves)

u(z) ∼ −
√

3

2
ϕ cos z + O(ϕ2) . (23)

An additional family of solutions which vary periodically with z is obtained if, as in
the case of two-dimensional unsteady flow, the presence of singularities is accepted.
It exists for sub-critical and, interestingly, also for super-critical flow conditions
and can be expressed in terms of the Weierstrass elliptic function ℘(z; g2, g3) with
g2 = sgn(Γc − Γ )/12 while g3 remains arbitrary:

u(z) = 6℘(z; sgn(Γc − Γ )/12, g3) + 1/2 . (24)

For Γ < Γc, Fig. 8(b), the distance between consecutive singularities (streak spacing)
varies between 0 and ∞ and a non-periodic solution is found in the limit g3 =
−1/216. In contrast solutions for Γ > Γc, Fig. 9, are always periodic as they
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Figure 8. Steady sub-critical solutions of (11) without forcing; dashed lines: us = 0, 1; (a)
bounded, eqns. (21), (22), (b) singular, eqn. (24).

cannot decay to a two-dimensional steady state and there exists an upper bound
∆z ≈ 10.2909 for the spacing of streaks.

The soliton solution (22) exhibits the exponential decay for z → ∞ observed in
numerical solutions for steady two-dimensional upper branch flows disturbed by an
isolated three-dimensional surface mounted obstacle while the existence of periodic
solutions (21) support the finding that the perturbation displacement thickness −A
exhibits an oscillatory behaviour for z → ∞ if one considers disturbances of steady
planar states corresponding to the lower branch, Braun and Kluwick [2]. The phys-
ical meaning of singular solutions (24) and in particular the possible existence of
super-critical steady states associated with a maximum streak spacing remains un-
clear at present.

As a last class of exact solutions to the unforced version of (11) we consider
travelling wave solutions

u(z, t) = v(ξ) , ξ = z − Ut − ξ0 , (25)

where U and ξ0 denote the wave speed and an arbitrary constant. For Γ < Γc one

11
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Figure 9. Singular steady super-critical solutions; solid line: limiting case with maximum
period 2ω2max ≈ 10.2909 (g3 ≈ −0.00423616).

then obtains

v′′ + Uv′ + v − v2 = 0 . (26)

Because of the invariance property u(z, t; U) = u(−z, t;−U) it is sufficient to con-
sider right running waves U > 0 only. Except for U = 0 bounded solutions connect
the steady states us = 1, 0, Fig. 10a. In contrast, singular travelling wave solutions
are seen to deviate and return to the stable upper branch level u = us = 1, Fig. 10b.

3.3. Blow-up in unsteady three-dimensional flow

For two-dimensional unsteady flow the singular behaviour of u near blow-up is read-
ily obtained from the exact solution (16), (17): u ∼ 1/(t − t∗) as |t − t∗| → 0.
In the case of three-dimensional flow, however, the analysis of the flow structure
is considerably more complex and a fully self-consistent description has not been
obtained yet. Work carried out by Hocking et al. [11] in a different context suggests
the ansatz, Braun and Kluwick [4]

u(z, t) ∼ 1

t
f(η, τ) + · · · , η =

z
√

|t|τ
, τ = − ln |t| (27)

as t → 0 (where the blow-up point is assumed at t∗ = 0 and z∗ = 0 without loss of
generality) and results in

f +
η

2
fη−f 2 =

η

2τ
fη−fτ −

sgn(t)

τ
fηη− sgn(t) e−τf +e−2τ

[

θ(Γ − Γc)

2
− g

]

. (28)

Expansion of f(η, τ) for τ → ∞ requires the introduction of logarithmic terms

f(η, τ) ∼ f0(η) + g1(η)
ln τ

τ
+

f1(η)

τ
+ O

(

ln2 τ

τ 2

)

. (29)

Near blow-up exponentially small terms in (28) can be neglected to the order con-
sidered here which in turn allows for an analytical treatment and, furthermore,

12
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Figure 10. (a) bounded and (b) singular travelling (right running) wave solutions of
Fisher’s equation (26) depending on the wave speed U .

reveals the important symmetry property f(η, τ) → f(iη, τ) if t → −t indicating
that, similar to two-dimensional flows, also z-dependent solutions of (11) can be ex-
tended beyond blow-up and that the singular behaviour for t → 0− forces a singular
behaviour for t → 0+:

f∓

0 =
8

8 ± η2
, g∓

1 = ∓ 10 η2

(8 ± η2)2
, f∓

1 =
16 ∓ c1η

2 ∓ 8η2 ln |8 ± η2|
(8 ± η2)2

. (30)

Here c1 is an arbitrary constant depending on initial conditions and the upper/lower
sign corresponds to t → 0∓. According to (30) the focussing of u as the blow-up
time is approached leads to the generation of a pair of vortices after blow-up moving
along the paths

ηs(τ) =
zs(t)√

tτ
= ±

√
8 + · · · , (31)

Fig. 11, which is thought to provide a mechanism for the appearance of coherent
structures (Λ-vortices, see Fig. 2) in transitional separation bubbles, Braun and
Kluwick [4]. Unfortunately, expansion (29) ceases to be valid in a vicinity of the
moving singularities where all terms become of equal magnitude. This deficiency
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u(z, t)

blow-up

Figure 11. Local blow-up behaviour of solutions to Fisher’s equation (11) (schematic); for
t > 0 the solution is shown in the right half plane only.

can be partly corrected through the introduction of inner regions (η ±
√

8)τ = O(1)
where the leading order terms represent singular travelling waves discussed in §3.2.
in the limit of infinite wave speed. Higher order terms, however, cannot be matched
with the outer solution (29) and, as a result, the flow description remains incom-
plete. Nevertheless, this analysis generalized by the method of strained coordinates
indicates that ηs(τ) may deviate from the values ±

√
8 by corrections of O(ln τ/τ)

which appears to be supported by numerical evidence, Braun and Kluwick [4].

3.4. Numerical prediction of blow-up: influence of forcing

The forced FKPP equation (11) is one of many partial differential equations which
have solutions that blow-up in a finite time. The blow-up typically involves the
solution becoming infinite at an isolated point at a finite time. Near the blow-
up point the solution develops a singular spike with both decreasing width and
increasing height. To compute the solutions of blow-up accurately it is essential to
employ an adaptive method which can then move points into the blow-up region.
The adaptive meshing algorithm implemented here is based on the moving mesh
methods of Huang, Ren and Russell [12], [13].

Defining a monitor function M(z, t, u(z, t)) > 0 and a computational coordinate
ξ an equation for the evolving mesh is given by

∂

∂ξ

(

M
∂z

∂ξ

)

= −σ
∂2

∂ξ2

(

∂z

∂t

)

, (32)

where the parameter σ ≪ 1 is a relaxation time determining the time scale over
which the mesh converges to a steady state. This is an approximation to the equation
Mzξ = 1 modified to include temporal smoothing. The approach is to discretise
(32) on a uniform ξ mesh and discretise the Fisher equation using Hermite cubic
collocation on the nonuniform mesh generated from (32). The choice of function M is
critical and motivation comes from requiring that the underlying self-similar scaling
transformation exhibited by solutions of Fisher’s equation near blow-up should be
a property also of the numerical algorithm. In the neighbourhood of the blow-up
point the linear and forcing terms in (11) are insignificant in describing the leading
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blow-up structure. With these terms neglected the resulting equation is invariant
under the rescaling t → t∗ + β(t − t∗), u → u/β, z → z∗ + β1/2(z − z∗) where the
blow-up point is at (z∗, t∗). The choice of M = −u then ensures that (32) is also
invariant under these scalings near blow-up. While solutions of (11) near blow-up
are not self-similar under these scalings they are approximately self similar, see (27),
(29), and (30). It can be shown then, Budd, Chen, Huang and Russell [6], that for
the coupled problems (11), (32) the computed mesh points near blow-up have also
the desirable property of lying on trajectories for which η given by (27) is constant.
This reveals the usefulness of the moving mesh method in inheriting the natural
spatial structure of the original differential equation.

An example of blow-up in finite time is shown in Fig. 12 where we see the evolu-
tion to blow-up for the applied forcing g(z, t) = 30 sin(2t)e−100z2

with initial condi-
tion u(z, 0) = 1. The scaling analysis above suggests that the evolution presented

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
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 1.1

 0  1  2  3  4  5

(t − t∗)u

η

f−

0

t = 3.75

Figure 12. Evolution to blow-up for the applied forcing g(z, t) = 30 sin(2t)e−100z2

with ini-
tial condition u(z, 0) = 1. Consecutive time steps: t = 3.75, 3.752, 3.75349998, 3.7541998;
estimated blow-up time t∗ ≈ 3.75438944, blow-up profile f−

0 , (30).

in Fig. 12 provides a typical structure that is independent of the precise forcing
imposed in the neighbourhood of blow-up. The question is then: how are varia-
tions in the applied forcing reflected in blow-up formation? The formal asymptotics
of Galaktionov, Herrero and Velázquez [9] indicate the possibility of an alternative
‘flatter’ asymptotic structure near blow-up described by the Hermite polynomials
Hm(y), y = z/

√
t∗ − t with m ≥ 4 and m even. We are able to generate results

suggestive of this flatter blow-up structure through coalescing spike structures gener-
ated by a two-peak forcing of the form g(z, t) = 30 sin(2t)(e−100(z−R)2 + e−100(z+R)2).
For R large there is blow-up at two points and R small at one point. However
for R = R∗ ≈ 1.92969 the blow-up at z = 0 is associated with the coalescing of
two maxima. This blow-up pattern is seen in Fig. 13. More complicated and flat-
ter blow-up patterns can also be generated by inclusion of additional peaks in the
forcing and appropriate tuning of the peak separation distance.
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Figure 13. Flat blow-up structure for forcing g(z, t) = 30 sin(2t)(e−100(z−R)2 +e−100(z+R)2),
R = 1.92969 with initial conditions u(z, 0) = 1. Consecutive time steps: t = 4.180145 +
i∆t, i = 0, 2, 4, 6, 8, 10, 15; ∆t = 10−7.

4. Conclusions

In the present study it has been shown that near critical flow phenomena are gov-
erned by the same evolution equation of Fisher’s type for both routes leading to the
separation of high Reynolds number laminar flows analyzed in the past. Although
this equation has been investigated over 70 years, the existing literature contains
relatively little material which is of relevance in the present context. This is due
to the fact that in most investigations carried out to date u(z, t) is taken to be in
the interval [0, 1] or [0,∞), which is sufficient if one stays within its classical field
of applications, e.g. population dynamics, but is too restrictive if it is used to study
near critical separated flows. Here u may vary in the whole range (−∞,∞) which
significantly increases the richness of solutions. First steps towards the understand-
ing of the associated new phenomena have been taken by Braun and Kluwick [4], [5].
Here a number of new solutions have been presented which are of interest both in
the context of structure formation and flow control. For example, it has been shown
that unsteady two-dimensional perturbations of a two-dimensional critical steady
state caused by harmonic oscillations of a surface mounted hump starting at t = 0
can be expressed in terms of Mathieu functions leading in turn to a complete picture
of the flow behaviour. Among others it is found that, in incompressible sub-critical
flows, the critical value ac of the amplitude a causing bubble bursting increases with
increasing forcing frequency as observed experimentally.

In addition to analytical considerations a new numerical scheme allowing the
study of general unsteady, z-dependent flows and specially designed to capture the
phenomenon of bubble bursting in detail has been presented. Results obtained so far
support existing analytical evidence that the flow properties for |t − t∗| → 0 where
t∗ denotes the bursting time are universal, i.e. independent of the specific form of
the adopted forcing term but work in progress also shows that the actual value of
t∗ is very sensitive to small changes of the forcing and thus can be controlled very
effectively.
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