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Abstract

The flow separating from a wing-tip undergoes a vigorous swirling motion, and for large aero-
planes these trailing vortices are strong and persistent and represent a hazard to following aircraft.
The resulting flow is characterized by the presence of both axial and azimuthal velocity compo-
nents. This study is concerned with understanding the instabilities of unsteady disturbances added
to such flows. In particular, the absolute/convective instability characteristics of a family of model
basic flow profiles to axisymmetric inviscid disturbances is investigated. The new result is that
these flows can be absolutely unstable to axisymmetric waves. If the onset of axisymmetric abso-
lute instability turns out to be related to the appearance of axisymmetric vortex breakdown, then
these results could provide guidance for how a trailing vortex might be modified to promote vortex
breakdown and thereby greatly enhance its dissipation.

1. Introduction

This paper is concerned with the instabilities of swirling jets. In particular, the propagation char-
acteristics of inviscid unstable axisymmetric waves are determined. Swirling jets arise in diverse
technological applications. The swirl might be introduced as part of a flow control strategy, or
could occur naturally in the flow. Swirling wakes, like trailing wing-tip vorticies, are included
implicitly, because they are swirling jets when viewed in the appropriate reference frame. This
investigation is motivated by the phenomenon of vortex breakdown of swirling jets in which an
axisymmetric bubble of recirculating fluid, with front and rear stagnation points, spontaneously
appears in the fluid. This bubble acts like a bluff-body and the wake-like flow behind it breaks
down via helical modes. This proceedings paper summarizes findings from a paper recently sub-
mitted by the author to the Journal of Fluid Mechanics, and further details can be found there.

Vortex breakdown was first observed in the flow over delta wings in the late 1950s. Harvey (1962)
showed how it could be conveniently studied in swirling flows in pipes, and many remarkable flow
visualisations of vortex breakdown can be seen in Sarpkaya(1971). Harvey (1960) suggested that
it arises by a similar mechanism to that which produces hydraulic jumps in the flow of shallow
water. Benjamin (1962) developed a theoretical framework for describing vortex breakdown, like
a hydraulic jump, as the transition region connecting an upstream super-critical flow, where all
disturbances travel downstream only, to a downstream sub-critical flow, where disturbances can
travel upstream and downstream. Benjamin was careful to distinguish his theory from rival theo-
ries that proposed that vortex breakdown is the outcome of a hydrodynamic instability of the basic
swirling jet flow. Benjamin argued that the super- or sub-critical state of the flow is determined
by the propagation properties of neutral inviscid inertial waves, and presented a criterion for the
existence of a linearized wave with zero phase velocity, which separates super- from sub-critical
flows.

However, swirling jets and wakes also bear unstable waves. The generalization to include the prop-
agation properties of instability waves requires the use of Briggs (1964)’s method to distinguish
between convectively unstable flows, where all disturbances travel downstream, as in super-critical



flow, and absolutely unstable flows, where disturbances travel upstream and downstream, as in
sub-critical flow. See Huerre & Monkewitz (1985) for an early application of Briggs’ method to
fluid flows, and the review by Huerre & Monkewitz (1990). However, the essential physical con-
cepts of absolute and convective instabilities were independently presented in the context of fluid
mechanics by Gaster (1968).

Absolute instability is identified by considering the wavepacket response to an impulsive distur-
bance to an otherwise undisturbed basic flow. This response can be obtained by evaluating inverse
Fourier-Laplace-type transforms over frequencies and wavenumbers. The frequency (Laplace-
type) transform is evaluated by placing the integration path above singularities in the complex
frequency-plane to respect the principle of causality, i.e. to ensure zero response before introduc-
tion of the impulse, then closing the path in the lower half-plane allows residue theory to be used.
The problem is thus reduced to an integral in the wavenumber plane, and the integration path is
placed on the real axis. At large times this integral can be estimated by deforming the integration
path to cross the highest saddle-point whose valleys contain the real axis. This dominant saddle is
the pinch-point of Briggs’ method. If the imaginary part of the frequency at the pinch-point is pos-
itive in the rest-frame then the flow is absolutely unstable. For the axisymmetric jets considered
here, it is the axial wavenumber plane that is of interest; the azimuthal wavenumber is an integer.
In this paper we restrict attention to axisymmetric waves with zero azimuthal wavenumber.

A number of authors, e.g., Billant, Chomaz & Huerre (1998), Delbende, Chomaz & Huerre (1998),
Lim & Redekopp (1998), Loiseleux, Chomaz & Huerre (1998), Olendraru et al. (1999), Gallaire
& Chomaz (2003a, b), Ruith et al. (2003), Gallaire et al. (2006) have investigated the possibility
of relating the onset of vortex breakdown to the onset of a transition of the jet from a convectively
unstable state to an absolutely unstable state. Afterall, it seems reasonable that if a jet supports
unstable waves, then it may be their propagation characterstics that determine the appearance of
vortex breakdown, because they are expected to dominate the flow field. A lot of progress has been
made in establishing a relation between the appearance of helical modes in experiments and simu-
lations with the discovery of absolutely unstable helical modes in the wake region downstream of
a nominally axisymmetric breakdown bubble.

However, spatio-temporal stability studies of axisymmetric modes in swirling jets have proved
more problematic, and there are no reports of absolutely unstable axisymmetric waves. Lim &
Redekopp (1998) calculated the dominant saddle (pinch-point) for axisymmetric inviscid waves
in a simple model swirling jet, and found these waves to be convectively unstable. They found
that increasing the swirl reduces the damping rate of axisymmetric waves in the rest-frame, but
also causes the dominant saddle-point to cross into the left half of the complex wavenumber plane.
Such modes appear unphysical because they grow exponentially in the radial direction, while the
imposition of homogeneous boundary conditions requires exponential decay of disturbances in
the radial direction. This behaviour has presented an obstacle to the use of Briggs’ method in the
study of axisymmetric waves in swirling jets. However, in the present paper, we show that an
understanding of the physical significance of these waves does lead to new insights into the nature
of the absolute instability of axisymmetric waves in swirling jets.

In § 2 we review the recently discovered physical interpretation, and consequences, of modes that
cross into the left half of the complex wavenumber plane. The governing equations, swirling
jet models and dispersion relations are given in § 3. The main results are presented in § 4, and
conclusions in § 5.

2. Left half-plane modes

In an unconfined flow the shear layer (jet, wake, boundary layer etc) is surrounded by fluid with
constant (possibly zero) velocity. In this outer fluid homogeneous boundary conditions on distur-
bances require disturbances to decay exponentially with distance from the shear layer. However,



if a saddle point approaches the imaginary axis of the wavenumber plane, then its rate of decay
in the cross-flow direction diminishes. A saddle point on the imaginary axis does not decay, but
has constant amplitude. A saddle point that crosses into the left half of the complex wavenumber
plane will grow exponentially in the cross-flow direction. As well as in the swirling-jet study of
Lim & Redekopp (1998), left half-plane modes have also been found in mixing layers (Huerre &
Monkewitz, 1985) and plane wakes and jets with variable density (Yu & Monkewitz, 1990, Juniper
& Candel, 2003, Juniper, 2006), but they were dismissed as unphysical.

However, Healey (2006a) has shown that the pinch-point of the absolute instability in the rotat-
ing disk boundary layer becomes asymptotically close to the imaginary axis of the appropriate
complex wavenumber plane in the long-wave limit in the inviscid stability problem. The basic
flow was von Kármán’s similarity profile, which is an exact solution of the Navier-Stokes equa-
tions. The stability results were obtained analytically using matched asymptotic expansions and
are a self-consistent approximation to the Navier-Stokes equation. It was confirmed that they give
accurate quantitative predictions when compared with numerical solutions to the stability equa-
tions. Therefore, pinch-points approaching the left half of the complex wavenumber plane are
genuine features of spatio-temporal hydrodynamic stability investigations, and require physical
interpretation.

A global investigation of the wavenumber plane was needed, which was beyond the scope of the
long-wave theory described above. This was carried out by Healey (2006b). It was discovered that
there are unstable modes that grow exponentially in the wall-normal direction in the rotating disk
boundary layer when the wavenumbers are small enough. These modes are efficiently described
using parts of the dispersion relation continued into the left half-plane. Although these roots of
the dispersion relation grow exponentially, and are indeed unbounded in the wall-normal direction,
and therefore do not satisfy homogeneous boundary conditions, the physical disturbance produced
by an initial-value problem does always satisfy homogeneous boundary conditions. This is be-
cause the flow field is initially undisturbed, and the disturbance created by forcing at the wall only
propagates in the wall-normal direction at finite velocities. The wall-normal propagation velocities
can be predicted using a saddle-point method incorporating terms corresponding to propagation
in both the streamwise and wall-normal directions (by combining the ‘wavy’ complex exponen-
tial with the exponential form of the eigenfunction taken by the disturbance where the basic flow
is uniform). These saddle-points can exist in either the left or right hand halves of the complex
plane, but their large-time predictions of wall-normal exponential growth and propagation agree
well with numerical evaluations of the inverse transforms calculated using integration paths that
pass only over sheets of the dspersion relation that decay exponentially in the wall-normal direc-
tion. The part of the dispersion relation that controls the wall-normal growth and propagation has
also been described by long-wave theory, see Healey (2005).

The physical behaviour of wall-normal growth and propagation associated with a pinch-point
crossing into the left half-plane is sensitive to how the flow is confined in the wall-normal di-
rection. One can normally assume that if the boundary to the flow in the cross-flow direction is
far enough away, then the exponential decay of disturbances in the cross-flow direction allows the
flow to be treated as unconfined in that direction. However, this is not the case for flows that gen-
erate exponential growth in the cross-flow direction: no matter how far away the outer boundary
is placed, it still quantitatively, and qualitatively, affects the spatio-temporal stability properties
of the flow, as first shown by Healey (2007). Disturbances grow in the wall-normal direction in
accordance with the unconfined-flow theory until they reach the outer boundary. There is then
a period of reflections of the disturbance between the boundary layer plate and the outer plate
while a standing wave is established. At large times, when the outer plate is far from the bound-
ary layer, this standing wave has absolute instability growth rate equal to the maximum growth
rate of the wall-normal propagating disturbance of the unconfined flow. Moving the outer plate
closer to the shear layer actually increases the absolute instability growth rate (unless the outer
plate becomes very close to the shear layer). Therefore, confinement can, in principle, create an



absolutely unstable flow from one that would only be convectively unstable when unconfined.
These conclusions all follow from the fact that confining a flow is a singular perturbation since the
continuous spectrum arising from a branch-cut of the dispersion relation for the unconfined flow
is replaced by an infinite discrete spectrum for the confined flow, and Healey (2007) has shown
how this leads to infinitely many new saddle-points being created, one of which can form the new
pinch-point. The results of Lim & Redekopp (1998), Juniper & Candel (2003) and Juniper (2006)
concerning the effect of confinement in problems with pinch-points approaching, or crossing into,
the left half-plane are all consistent with the framework developed in Healey (2006b) and Healey
(2007), though the implications of a pinch-point entering the left half-plane, and the expected
consequences of confinement on the absolute instabilities, were not understood at the time.

We show below that these conclusions carry over directly to the swirling jet problem.

3. Governing equations

The dimensional equations of motion for axisymmetric incompressible inviscid flow in cylindrical
coordinates are
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where the radial and axial coordinates are r∗ and z∗ respectively, time is t∗ and ρ∗ is the density of
the fluid. The velocities in the radial, azimuthal and axial directions are u∗, v∗ and w∗ respectively
and the pressure is p∗. Lengths are made dimensionless using the radius of the jet, R, velocities
are made dimensionless using the axial velocity of the jet on the jet axis, U0, and time by R/U0.
The dimensionless basic flow velocity and pressure profiles for a columnar vortex are U(r) = 0,
V (r), W (r) and P (r), where ∂P/∂r = V 2/r, and the flow field is expressed as a superposition
of this basic flow and small unsteady disturbances in the form

u∗(r∗, z∗, t∗) = εU0u(r) exp i(kz − ωt), (5)
v∗(r∗, z∗, t∗) = U0V (r) + εU0v(r) exp i(kz − ωt), (6)
w∗(r∗, z∗, t∗) = U0W (r) + εU0w(r) exp i(kz − ωt), (7)
p∗(r∗, z∗, t∗) = ρ∗U

2

0 P (r) + ερ∗U
2

0 p(r) exp i(kz − ωt), (8)

which, when substituted into (1) – (4), and linearized in the small parameter ε, gives

u′ +
u

r
+ ikw = 0, (9)

−iωu + ikWu − 2V

r
v = −p′, (10)

−iωv + ikWv + V ′u +
V

r
u = 0, (11)

−iωw + ikWw + W ′u = −ikp. (12)

3.1. A MODEL SWIRLING JET WITH DISCONTINUOUS VELOCITY PROFILES

We re-examine one of the basic flows studied by Lim & Redekopp (1998) in which a jet in rigid-
body rotation, and with uniform axial velocity, is surrounded by still fluid of the same density. The



dimensionless basic flow is

V (r) =

{

Sr for 0 ≤ r ≤ 1
0 for r > 1

, W (r) =

{

1 for 0 ≤ r ≤ 1
0 for r > 1

. (13a, b)

The swirl, S = ΩR/U0, measures the azimuthal velocity at the jet edge relative to the axial
velocity, where Ω is the angular velocity of the jet. This basic flow is a simple model for the
experiment of Billant et al. (1998).

Substituting (13) into (9) – (12) and eliminating u, v and w for 0 ≤ r ≤ 1 gives

p′′1 +
p′
1

r
+ k2

[

4S2

(ω − k)2
− 1

]

p1 = 0 (14)

where the subscript ‘1’ denotes a variable in the core of the jet. The solution that is regular at the
jet axis is

p1 = J0(βr), (15)

where
β2 = k2

[
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(ω − k)2
− 1

]

(16)

and Jm is the order-m Bessel function of the first kind (the solution has been normalized so
that the arbitrary multiplicative constant is unity); the choice of square-root in calculating β is
irrelevant because J0 is an even function. The radial component of the disturbance, required later,
is recovered from

u1 =
ik2

(ω − k)β2
p′
1
. (17)

Substituting (13) into (9) – (12) and eliminating u, v and w for r > 1 gives

p′′
2

+
p′
2

r
− k2p2 = 0 (18)

where the subscript ‘2’ denotes a variable outside the core of the jet. The solution to (18) depends
on the choice of outer boundary condition, i.e. on whether the flow is confined or unconfined in
the radial direction.

When the flow is radially unconfined, the solution satisfying homogeneous boundary conditions,
i.e. that decays exponentially as r → ∞, is

p2 = AK0

(√
k2r

)

, (19)

where A is a constant of integration, Km is the order-m modified Bessel function of the second
kind and the square-root has positive real part, which implies branch-cuts on the imaginary axes of
the complex k-plane. The radial component of the disturbance, required later, is recovered from

u2 = − i

ω
p′
2
. (20)

The solutions in the core are matched to those outside the core by satisfying two jump conditions,
which leads to the dispersion relation, see Drazin & Reid (1981). The kinematic condition requires
the interface to move with the radial velocity in each region; it leads to

u1(1)

ω − k
=

u2(1)

ω
. (21)

The dynamic condition requires continuity of pressure across the interface; it leads to

p2(1) = p1(1) +
iS2

ω − k
u1(1), (22)



where the second term on the right-hand side of (22) is due to centrifugal effects.

Substituting (15), (17), (19) and (20) into (21) and (22) and eliminating the constant A produces
the dispersion relation for axisymmetric waves in the unconfined swirling jet:
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Additional terms appear in the dispersion relation when the stationary outer fluid is confined by
an outer cylinder of dimensionless radius h, coaxial with the jet, giving outer boundary condition
u2(h) = 0, and therefore p′

2
(h) = 0 by (20). The solution to (18) is now
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where A′ is a constant of integration and Im is the order-m modified Bessel function of the first
kind. Substituting (15), (17), (20) and (24) into (21) and (22) and eliminating the constant A ′

produces the dispersion relation for axisymmetric waves in the confined swirling jet:
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Although the model flow (13) allows these analytical dispersion relations to be derived, it is un-
physical in that the discontinuities in velocity at the jet edge generate a Kelvin-Helmholtz in-
stability that makes the initial-value problem ill-posed because arbitrarily short length scales are
amplified with arbitrarily large growth rates. Therefore, we also consider smooth velocity profiles.

3.2. A MODEL SWIRLING JET WITH SMOOTH VELOCITY PROFILES

We consider the dimensionless model swirling-jet velocity profiles
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where
erf(x) =

2√
π

∫

x

0

e−t
2

dt (27)

is the error function, which has the property limx→±∞ erf(x) = ±1. These profiles produce shear
layers of dimensionless thickness d at the edge of the jet for both axial and azimuthal profiles, and
they are exponentially close to (13) when |r − 1|/d is large.

Gallaire & Chomaz (2003b) have also considered smooth velocity profiles that decay to zero
outside the jet. Their models are more complicated and have a number of parameters that were
tuned to give best fit to the experimental profiles of Billant et al. (1998). However, (26) captures
the essential properties required for present purposes.

The model profiles (26) are substituted into (9) – (12), which are solved numerically with boundary
conditions for unconfined flow. An advantage of these profiles is that away from the shear layers
at the jet edge, the analytic solutions (15) and (19) apply, and can be used to produce initial
conditions for the numerical solution on each side of the shear layer. The linearized equations are
solved by integrating (9) – (12) from r = 1 − 4d to r = 1, and from r = 1 + 4d to r = 1, and
the solutions from each side of the shear layer are matched by requiring p/p ′ to be continuous at
r = 1, to produce roots of the dispersion relation. To ensure the accuracy of (15) in providing
initial conditions at r = 1 − 4d we only consider 0 < d < 1/4. There is no stiffness in the
differential equations even when d is numerically small because the integration range scales with
d.
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Figure 1. Contours of constant Im(ω) in the complex k-plane for the dispersion relation for the
unconfined jet (23) for S = 2.882. Contours are at Im(ω) = −0.0788, −0.05074 and 0. The
dominant saddle point (pinch-point) lies at k ≈ −0.2514−2.382i, at which ω ≈ 3.463−0.05074i;
the other saddle point lies at k ≈ −0.01014−4.984i, at which ω ≈ 4.704−0.07880i. The branch-
cut originally placed on the imaginary k-axis has been removed so that solutions with Re(k) < 0
grow exponentially in r as r → ∞, those with Re(k) > 0 decay exponentially in r.

4. Axisymmetric absolute and convective instabilities

The inviscid spatio-temporal stability characteristics of these model swirling jets is determined by
plotting contours of constant Im(ω) in the complex k-plane. As noted by Lim & Redekopp (1998),
the dominant saddle (pinch-point) for the unconfined dispersion relation (23) crosses the imaginary
k-axis at S = 2.203. However, of particular physical significance is the value S = 2.882 at which
a contour with Im(ω) = 0 touches the imaginary k-axis, as shown in figure 1.

For S just larger than 2.882 the Im(ω) = 0 contour crosses into the left half-plane, but the flow
remains convectively unstable, so one could consider the response to periodic forcing. If the
forcing frequency is chosen to lie within the range of frequencies for which the Im(ω) = 0 contour
lies in the left half-plane, then the forced response will be a mode that grows exponentially in r
for large r. However, at finite times after the forcing is switched on, this mode will only have
propagated a finite radial distance. Thus a wave growing exponentially in r can, nonetheless,
satisfy homogeneous boundary conditions at all times. The radial propagation of the front of this
normal mode is part of the start-up transient created when the periodic forcing is switched on,
and it can be determined from a consideration of the impulse response. The standard saddle-point
method for calculating the impulse response at large times can be adapted so that propagation in
the cross-flow direction, as well as the usual streamwise direction, can be investigated, see Healey
(2006b).

However, this growth in the radial direction only continues until the disturbance reaches the bound-
ary of the flow. Ordinarily, a boundary placed far from the jet has little influence on the distur-
bances within the jet because of their exponential radial decay outside the jet. Conversely, the
boundary, however far away, has a major effect on these modes that grow exponentially in the
radial direction. The effects of cross-flow confinement on this type of mode were investigated in
Healey (2007) for waves in a model of the rotating disk boundary layer. It was shown that con-
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Figure 2. Contours of constant Im(ω) in the complex k-plane for the dispersion relation for
the confined jet (25) for S = 2.882 and h = 5. Contours are at the levels of the saddle
points created by confinement; the saddles, and Im(ω) for each one, in the form (k, Im(ω)),
are at (0.167 − 0.840i,−0.319), (0.312 − 1.574i,−0.056), (0.408 − 2.283i, 0.228), (0.414 −
3.01i, 0.250), (0.417 − 3.800i, 0.171), (0.475 − 4.584i, 0.121), (0.481 − 5.289i,−0.009) and
(0.414 − 6.090i,−0.323). The dominant saddle point (pinch-point), marked P , lies at (0.414 −
3.01i, 0.250). The poles, where ω → ∞, are marked by solid disks.

finement creates an infinite number of new saddle points that approach the imaginary k-axis as
the confinement boundary is placed further from the shear layer. Figure 2 shows how confinement
by an outer cylinder has the same effect on the complex wavenumber plane for the swirling jet.
One of the confinement saddle points becomes the pinch-point, and so confinement creates ax-
isymmetric absolute instability for swirling jets. As h → ∞ the confinement saddles approach the
imaginary k-axis, but the confined flow remains absolutely unstable for S > 2.882 for arbitrarily
large h even though the unconfined flow is only convectively unstable, see the neutral curve for
absolute instability in figure 3.

Complex wavenumber planes have also been calculated for the smooth profiles (26). It has been
verified that for sufficiently small d the picture approaches that of the discontinuous model (13),
and that a short-wave cut-off for the instability is created, producing a well-posed initial-value
problem. Furthermore, it is found that increasing d enhances axisymmetric absolute instability via
an enhancement of the centrifugal instability present in the shear layers at the jet edge. The rotating
core of the jet acts like the rotating inner cylinder of a Taylor-Couette experiment. Figure 4 shows
the neutral curve for axisymmetric absolute instability in the unconfined smooth swirling jet.

5. Conclusions

Axisymmetric absolute instability has been found for swirling jet models. It has been shown that
confining a swirling jet can create axisymmetric absolute instability even when the unconfined
swirling jet is only convectively unstable, and even when the confining outer cylinder has arbitrar-
ily large radius. It is interesting to note that many experiments on vortex breakdown are carried out
with swirling jets inside pipes. It may be that confinement inside the pipe enhances the absolute
instability which in turn leads to vortex breakdown.
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Figure 3. Solid line is neutral curve for absolute instability; dashed line is the asymptote for the
neutral curve as h → ∞ at S = 2.882 where the Im(ω) = 0 contour touches the imaginary k-axis
in the unconfined problem.
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Figure 4. Solid line is neutral curve for absolute instability for the smooth profiles (26) with
unconfined flow; dashed lines indicate subdominant saddle-points with Im(ω) = 0. Values at
d = 0 were obtained using (23). Eigenvalues at the pinch-points on the neutral curve at S = 2.5
are k ≈ 0.265 − 4.92i, ω ≈ 4.03; at S = 2 they are k ≈ 0.674 − 4.88i, ω ≈ 3.26.

Centrifugal instability acts in the shear layer at the edge of the jet, and is found to enhance the
absolute instability as the shear layer thickens. The following scenario can therefore be envisaged:
in an experiment on a swirling jet issuing from a nozzle, the jet will have a thin shear layer
at its edge, whose thickness will increase with downstream distance by viscous diffusion. The
swirl in the jet will be approximately constant. Figure 4 suggests that for S > 1.5 the jet will be
convectively unstable as it leaves the nozzle, it will remain convectively unstable for some distance
downstream, until the shear layer reaches a critical thickness, at which point the jet becomes
absolutely unstable to axisymmetric waves.

A location where the flow undergoes a transition from convective to absolute instability provides a
site for the appearance of a steep-fronted nonlinear global mode according to Couairon & Chomaz
(1999) and Pier, Huerre & Chomaz (2001). It is also a point where the flow changes from a super-
critical state, supporting only downstream propagating waves, to a sub-critical state, supporting
both upstream and downstream propagating waves, and Benjamin (1962) has argued that such a
point is associated with the appearance of vortex breakdown. It is therefore interesting to consider
whether axisymmetric vortex breakdown might be related to a nonlinear global mode created by



the transition of a columnar vortex from a convectively unstable state to an absolutely unstable
state. Typical experimental values for the swirl that triggers vortex breakdown are S ≈ 1.6, which
is certainly consistent with values for axisymmetric absolute instability shown in figures 3 and 4.
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