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Abstract. A separated boundary layer flow at the rear of a bump is considered and two-
dimensional flow states at increasing Reynolds numbers are computed using a nonlinear contin-
uation procedure for the stationary Navier-Stokes system. The global instability analysis of the
steady states is performed by computing two-dimensional temporal modes. The analysis reveals
non-normal modes which are able to describe localized initial perturbations associated with large
transient energy growth. At larger time a global low-frequency oscillation is found accompanied
with periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-
normal cancellation of modes. The initial condition provided by the optimal perturbation analysis
is applied to Navier-Stokes time integration and is shown to trigger nonlinear ’flapping’ typical for
separation bubbles.
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1. Introduction

There is general evidence that laminar detached boundary layers are likely to un-
dergo two-dimensional low-frequency global oscillations [6] which have been observed
both in experiments, whether the separation bubble is triggered by leading-edge ge-
ometries ([4]) or by adverse pressure gradients ([8], [11]). The physical mechanisms
at the origin of this type of instability which occurs above a critical Reynolds number
are only partially understood. For instance, the frequencies associated with possi-
ble transition from convective to absolute instability of local velocity profiles with
a certain amount of reverse flow appear to be higher than the typical frequencies
of the oscillations known as ’flapping’ (cf. [9], [13]). By providing some evidence
for the appearance of secondary recirculating flow regions at the rear of the main
bubble, it has been conjectured ([5], [16]), that topological flow changes might be
responsible for the overall instability behaviour. This possibility has been explored
in [10] for a separated flow induced by a bump mounted on a flat plate but no
clear-cut confirmation of topological flow changes could be given, in the absence of
a basic state above criticality.
In this work we readdress the low-frequency oscillations for an elongated separation
bubble induced by the bump geometry which has already been considered in [10]. We
focus on the two-dimensional global instability behaviour. The three-dimensional
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transverse instability characterized by a global steady and weakly growing eigen-
mode has recently been analyzed in [7]. The resulting longitudinal instability first
takes place when increasing the Reynolds number, which has also been observed
in backward-facing step flows ([3], [2]). However, the low-frequency fluctuations
which lead to an overall motion of the separation bubble is the dominant instability
mechanism at higher Reynolds numbers.
The analysis combines a quasi-Newton approach to determine steady states for
Reynolds numbers above criticality and a numerical method suitable for computing
two-dimensional temporal modes. Section 2 is devoted to the description of the
numerical tools. The global stability results are discussed in Section 3 and an opti-
mal perturbation analysis is performed in Section 4. Optimal initial conditions are
then used in the direct numerical simulation procedure and are shown to produce
low-frequency ’flapping’ described in Section 5. Some conclusions are provided in
Section 6.

2. Numerical tools

The flow domain is 0 ≤ x ≤ L, η(x) ≤ y ≤ H, with η(x) the lower boundary
containing the bump which has already been considered in [10] (cf. figure 1 for the
geometry). The height H has been chosen large enough in order to recover uniform
flow, the Navier-Stokes system being made dimensionless using the displacement
thickness δ∗ at inflow, where the Blasius profile is described, and the uniform free-
stream flow velocity U∗

∞. The dimensionless bump height is h = 2 and the mapping

x̄ =
2

L
x− 1, ȳ =

1

H
(1− γ)y + γ with γ =

H + η

η −H
(1)

transforms the domain into [−1, 1] × [−1, 1]. A Chebyshev-Chebyshev collocation
discretization is used for the transformed system, together with a stretching in the
wall-normal direction which redistributes the collocation points in order to take into
account the boundary-layer structure.

Figure 1. Streamlines of flow states at a) Re = 510, b) Re = 620, c) Re = 670.
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Here, we focus on nonlinear equilibrium states of the stationary Navier-Stokes system
for increasing Reynolds number Re = δ∗U∗

∞/ν and hence the flow velocity u = (u, v)
and pressure p are solution of

f(u, p, Re) =
[
−(u · ∇)u−∇p + (1/Re)∇2u ; ∇ · u

]
= 0. (2)

Homogeneous Neumann boundary condition for the flow field u are imposed at
outflow x = L, whereas at y = H uniform flow u = (1, 0) is prescribed and the no-
slip condition applies on the wall boundary. At inflow the Blasius profile (U(y), 0) is
imposed. The Chebyshev-Chebyshev discretization is efficient in terms of precision
versus grid-size. The problem of spurious pressure modes associated to a Chebyshev
discretization in the square is overcome using extra-conditions, by imposing the
continuity of the normal derivative of the pressure at the corners and by eliminating
the four modes for which the gradient vanishes due to the Chebyshev discretization
(cf [12]). A quasi-Newton method, here the Broyden rank-one update procedure
(cf [15]), is considered to solve the system (2) for the steady state by adding the
Reynolds number as a parameter in an arc-length continuation procedure. The linear
systems to be solved during the iterations in the quasi-Newton approach involve the
Jacobian matrix

A(u, Re) = D(u,p)f(u, Re) (3)

which is evaluated at an initial guess of the flow field and a QR decomposition
is performed. The rank-one update of the decomposition at successive iterations
may easily be performed with little extra computational cost (cf. [15]). Once the
solution converged to a steady state (us, ps), its stability is computed by considering
two-dimensional temporal modes

u = û(x, y)e−iωt, p = p̂(x, y)e−iωt. (4)

Taking into account in the Jacobian evaluated at a steady state us that the flow
perturbation is zero at inflow, the modes are solution of the generalized eigenvalue
problem

−iωBq = A(us, Re)q (5)

with q = (û, p̂) and Bq = (û, 0). The resulting large eigenvalue problem is solved
using large-scale Krylov subspace projections together with the Arnoldi algorithm
similar to the approach used in [1]. In all the computations the length of the
computational domain is L = 300 and the height H = 30. The length of the box
proved to be large enough to minimize effects of the box-size on the stability results.
The modes are discretized using 250 collocation points in x and 40 collocation points
in y and a Krylov subspace with dimension m = 1600 has been considered.

3. Basic states and global instability analysis

The basic states at different Reynolds numbers are depicted in figure 1, the recir-
culation length increasing with the Reynolds number. In [10] no steady state could
be obtained using time integration of the Navier-Stokes system above a Reynolds
number of 610 and it has been speculated whether the observed global oscillations
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Figure 2. Eigenvalue spectrum at (a) Re = 590. The modes labelled from (1) − (6) are
depicted in figure 3. (b) Unstable part of the spectrum at Re = 590 (×) and Re = 620
(+).

were somehow connected with topological flow changes [16]. With the present non-
linear continuation procedure flow states are computed for higher Reynolds numbers
in the unstable range. The results to be discussed hereafter show that the flow at
Re = 620 is indeed unstable. But even at Re = 670 (cf figure 1c)) there is no
evidence of a change in topology.

Once a flow state obtained, its stability is computed with the method outlined in
Section 1. Figure 2a) shows the spectrum at Re = 590: There are several weakly
unstable modes and this Reynolds number hence appears to be slightly above the
margin of instability. In figure 2b) only the unstable parts of the spectrum are
depicted for comparison at Re = 590, 620, the amplification rates increasing with
the Reynolds number. The modes labelled from 1 to 6 are shown in figure 3, figure
3a) depicting the streamlines of the steady state at Re = 590. One observes that the
modes originate approximately at the center of the recirculation bubble. While the
mode labelled (1) in figure 2a) at a lower frequency reaches the outflow boundary
(cf. figure 3b), the modes (2) to (6) with equally spaced frequencies have the same
type of structure, the spatial spreading of the modes decreasing with increasing
frequency. The similarity of the eigenmode structure is a typical feature of non-
normal operators and the next section will describe the implication of this.
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Figure 3. a) Streamlines of basic state at Re = 590. b)-g) Streamwise velocity components
of eigenfunctions corresponding to eigenvalues labelled (1)-(6) in figure 2.

4. Optimal growth

When addressing the possibility of growth in a flow system, the notions of optimal
initial condition and non-normality of the underlying operators are essential [14].
We are looking for initial disturbances u0 that maximize the energy at time t

G(t) = max
u0 6=0

||u(t)||2E
||u0||2E

(6)

and a convenient form of this expression can be obtained by expanding the solution
in terms of the generalized eigenmodes u(t) =

∑N
l=1 κl(t)ûl with ûl solution of (5).

Hence the flow dynamics is described by

dκ

dt
= Λκ, κ(0) = κ0, (7)

where κ is the vector of expansion coefficients and Λ is a diagonal matrix whose
elements are given by Λl = −iωl. The flow perturbation energy in this basis is
||u||2E = ||F exp(Λt)κ0||22, where F is the Cholesky factor of the Hermitian energy
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measure matrix M with entries Mij =
∫
ûH

i ûjdxdy. Hence, the maximum growth
expressed in the basis of eigenmodes reads

G(t) = ||F exp (Λt)F−1||22. (8)

and the largest growth at time t is given by the largest singular value of F exp (Λt)F−1

and the optimal initial condition κ0 is the corresponding right singular vector pro-
viding the optimal initial flow condition u0 through the eigenmode expansion.

Figure 4. Envelope of maximum energy growth from initial condition, at Re = 590 with
truncation N = 337 (solid line) and N = 150 (dotted line). Broken line: envelope at
Re = 620.

The optimal energy gains G(t) are depicted in figure 4, for Re = 590 and Re =
620. The large Krylov subspace procedure (with m = 1600) gives rise to a set
of eigenvalues and its convergence in terms of optimal growth dynamics has been
assessed. At Re = 590 for instance the results with N = 337 modes and the gain
obtained for a much lower truncation at N = 150 (starting with the most unstable
modes) are very close. One observes a fast initial energy growth of a magnitude
of almost 109 followed by a global cycle with a period close to 200. This global
undulation is accompanied by a weak energy growth due to the amplification rates
of the individual modes.
Inspecting figure 2, one observes that the real parts of the unstable eigenvalues in
the right half of the spectrum (the modes labelled from (2) to (6)) are distant of
about δ ≈ 0.03 and the structures of the corresponding eigenmodes are similar. The
superposition of these modes as provided by the optimal perturbation analysis gives
rise to cancelling leading to the global period of 2π/δ ≈ 200. Similar non-normal
effects have also been described in a recent work on a separated flow in a cavity-like
geometry [1].
To illustrate the dynamical behaviour, the time evolution of the perturbation in the
eigenmode system is depicted in figure 5, starting with the optimal initial condition
which is mainly located in the vicinity of the rear part of the bump. The perturbation
evolves along the plate as a localized wavepacket accompanied with a tremendous
increase of energy and at approximately t = 250 it is leaving the recirculation bubble.
At the same time it reappears in the the rear part of the bubble, which is visible
at t = 320. The perturbation than evolves downstream (cf. structure at t = 470)
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Figure 5. Streamwise velocity component of the perturbation for increasing time from top
to the bottom, starting with the optimal initial condition (Re = 590). The vertical line
shows the location of the reattachment point.

before it reappears again in the bubble (cf. t = 520) and the cycle restarts. The
modes responsible for the oscillating flow pattern are individually weakly unstable
which leads to the overall growth shown in figure 4 for t > 200.

5. Direct numerical simulation dynamics

Focusing on the relation between optimal energy growth and the low-frequency os-
cillations observed in previous investigations of the separation bubble, the optimal
initial condition has been considered in the direct numerical simulation (DNS) pro-
cedure of the Navier-Stokes system used in [10].

Figure 6. Global energy of u−ub in the time-integrated Navier-Stokes system at Re = 590,
starting with optimal initial condition (solid line). Envelope of the eigenmode system is
depicted as the dashed line.

The flow at Re = 590 is considered, which according to the present analysis is slightly
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supercritical. As shown in [10], at this Reynolds number it was however possible
to converge by time marching to a steady state using the DNS procedure. Weak
stabilization effects might be attributed to the influence of the outflow boundary
of the shorter domain considered in the DNS (with L = 200), where a classical
convection condition is applied. The streamwise direction is discretized using fourth-
order finite differences with 1024 equidistant grid points. In y the region up to H =
80 is covered (with 97 Chebyshev-collocation points) for the solution to be uniform in
the upstream region, a simple linear coordinate transform being employed. The gain
in energy being expected to be close to 109, the optimal initial condition has been
affected with a small maximum amplitude of 5 10−5 (however above the residual
noise of order of 10−6 in the time-marching towards the steady basic state ub). The
energy of the perturbation u′ = u − ub has been integrated in the whole domain
and the gain is depicted in figure 6. Up to t = 200 the energy growth follows closely
the curve provided by the eigenmode system before nonlinear saturation occurs.
The integration has been pursued up to t = 3000 and the flow is seen to remain in
a nonlinear state. When entering the nonlinear saturation, the oscillations visible
in the global energy curve are somehow reminiscent of the global oscillations in
the envelope curve provided by the modes. The amplitude of the nonlinear flow

Figure 7. a) Amplitude
∫
||u′||dy of perturbation flow field in the DNS, as function of x,

at various times. b)-d) Instantaneous streamwise velocity components of the perturbation
flow field.

perturbation, by simply subtracting the base flow, along the plate at increasing
time has been computed and the results are shown in figure 7. At t = 100 the
perturbation is similar to that depicted in figure 5 for the dynamical system formed
with the global modes. At t = 300 a regeneration behaviour of the perturbation is
visible upstream the previous wavepacket at t = 250. The perturbation is highly
nonlinear and is hence far from being a superposition of eigenmodes.
In [10] low-frequency oscillations of the bubble have been reported at the supercrit-
ical Reynolds number Re = 650. In the present analysis similar fluctuations are
observed as a consequence of the initial optimal perturbation at Re = 590. Figure
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Figure 8. Power spectrum in time 500 ≤ t ≤ 3000 of streamwise velocity component at
x = 40, y = 1.

8 depicts the amplitude of the Fourier transform for the streamwise velocity profile
at x = 60, y = 1, that is at a position which corresponds approximately to the
center of the steady bubble. The low frequency f = δ/(2π) ≈ 0.005 corresponds
to the non-normal ’beating’ frequency in the eigenmodes system and indeed the
spectrum exhibits peaks in this frequency range, the nonlinear flow being highly
aperiodic. Similar to the results reported in [10] a second dominant range of higher
frequency is visible. Figure 9 shows an instantaneous vorticity field illustrating the
vortex-shedding behaviour resulting from the two-dimensional global oscillations.

Figure 9. Instantaneous vorticity at t = 1500.

6. Conclusion

In the aim of shedding new light on the phenomenon of global ’flapping’ in separated
wall-bounded flows, the two-dimensional flow over a bump has been considered, by
computing nonlinear states of the stationary Navier-Stokes system. When increasing
the Reynolds number, no topological changes in the flow structure are detected.
The separation bubble becomes unstable with respect to two-dimensional temporal
modes starting at the center of the bubble and extending more or less downstream
the reattachment point. The corresponding eigenvalues cross the axis of marginal
instability almost simultaneously and they exhibit equally spaced frequencies.
By performing an optimal initial disturbance analysis, a periodic regeneration mech-
anism of the perturbation at the rear of the bubble, resulting from non-normal
cancelling of eigenmode structures, has been detected. The time-integration of the
Navier-Stokes system starting with the optimal initial condition leads to nonlinear
aperiodic flow with however the reminiscence of a global low-frequency oscillation of
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the bubble. This gives some strength to the conjecture, that non-normal interaction
of global modes is at the origin of the ’flapping’ behaviour.
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