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Abstract.  We numerically study flow in a toroidal lid-driven cavity. It is shown that the radial 
geometry gives rise to interesting flow patterns. By comparing such a cavity to its planar 
counterpart, we highlight the effects of a radial geometry on the process of internal flow 
separation. A qualitative analogy is suggested between an axisymmetric cavity and a tall planar 
cavity. We also present results for internal flow-separation when the motion of the lid is 
periodic. 
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1. Introduction 
 
At high Reynolds numbers, accelerating and decelerating flows are not mirror 
images of each other. The left-right asymmetry caused by the presence of a 
steady laminar wake downstream of a bluff-body at even moderately low 
Reynolds numbers is all too well-known. With this notion of asymmetry in mind, 
we study here the axisymmetric counterpart of the planar lid-driven cavity (Fig. 
1). Here onwards, we refer to an axisymmetric lid-driven cavity as an ALDC and 
a planar lid-driven cavity as a PLDC. Our literature survey indicates that [1, 2, 3] 
seem to be the only published studies for flows in an ALDC. 

As the Reynolds number is increased, 2D flow in a PLDC of finite length 
tends to becomes 3D due to transverse pressure gradients produced by boundary 
layer effects at the end-walls. Additionally at higher Reynolds numbers, the flow 
also suffers from centrifugal instabilities which make the flow 3D. On the other 
hand, flow in the ALDC does not have end walls but it still remains prone to 
centrifugal instabilities at higher Reynolds numbers. The studies [1, 2, 3] have 
looked at the ALDC mainly as an attempt to remove the end-wall effects which 
is necessarily present in any experimental set-up of the PLDC. However, we 
have studied the ALDC from a slightly different view-point. Our motivation was 
a recent finding [4] of a flow situation where axisymmetry was responsible for 
flow-phenomena not possible in planar geometries. Further, in an axisymmetric 
closed geometry containing an incompressible fluid, conservation of mass 
necessitates that fluid as it spreads radially outwards must decelerate on an 
average. The lid-driven cavity having sharp corners is a good test problem for 
studying internal separated flows (as opposed to external separated flows like 
that occurring in the flow over an airfoil at high angles of attack). The aim of this 
study is to examine if the internal flow-separation occurring inside the PLDC can 
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be modified significantly by a radial geometry as that of an ALDC and to 
understand the physics of these geometry-induced separated flows. 

The paper is organised as follows. We start with a brief description of the 
numerical schemes used for solving the steady and unsteady Navier-Stokes 
equations for the ALDC geometry. The steady-state solutions for the square 
ALDC are compared to those available for the PLDC. We then make a limited 
comparison between the ALDC and the PLDC with large aspect ratio to point out 
certain qualitative similarities. The unsteady solutions are presented for the 
special case where the ALDC lid moves with a sinusoidal velocity. We make a 
brief comparison between this and the known results for a PLDC, especially with 
respect to variation of Reynolds number and curvature. In the discussion section, 
a previously known model for the PLDC is used to suggest a physical 
explanation for the kind of flow separation observed in the ALDC. We finally 
conclude with a summary of the main results and scope for further work. 
  
 
2. Numerical calculations 
 
The 2D, incompressible, axisymmetric continuity and Navier-Stokes equations in 
cylindrical coordinates, written in streamfunction-vorticity formulation are:  
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Referred to a cylindrical coordinate system the symbols represent : 
 

θω   - Azimuthal component of  vorticity 
ψ    - Streamfunction  
 r    -  Radial coordinate of the cylinder 
 z    - Axial coordinate along the axis of the cylinder 
 Re - Reynolds number based on the lid velocity and the length of lid 
 

The steady state version of equations (1) and (2) are solved numerically subject 
to no-slip and no-penetration boundary conditions at the walls. The initial 
condition is that of no flow inside the ALDC. At time t > 0 the top lid is 
impulsively moved radially outwards with a constant velocity U. At t > 0 the 
vorticity at the wall is calculated using the Thom’s boundary condition. The 
equations are solved by an iterative finite-difference scheme using successive 
over-relaxation [6]. The method uses central differencing and is second order 
accurate in space. Convergence is said to have been achieved when the 
cumulative difference between two successive iterations was less than 10-6. The 
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unsteady equations (1) and (2) are solved using a finite-difference scheme having 
second order accuracy in space and the time derivative is approximated using a 
fourth order explicit Runge-Kutta method. As shown in [7], this results in a 
scheme which is stable under the CFL condition given by the convective terms. 
A 128 x 128 grid has been used for all the results presented and grid-
independence of the results has been verified using 64 x 64 and 256 x 256 grids. 
The correctness of the numerical schemes has been verified by reproducing the 
previously published results of [8] and [9] for a PLDC and these are presented in 
Fig 2 and Fig. 3. The ALDC code was validated by recovering the results for a 
PLDC when the inner radius was very large. All streamline plots presented at the 
end of the paper are in the r-z plane in the cylindrical coordinate system defined 
above. 
 
2.1. STEADY STATE RESULTS 
 
Before presenting the results for a square ALDC, it is useful to briefly summarise 
the well-known results for a square PLDC as the Reynolds number is increased. 
At Re = 1000, the flow inside a square PLDC consists of a primary vortex and 
two secondary vortices at the corners [8]. At Re = 5000, a third vortex starts 
developing at the upstream corner near the moving lid [8]. As the Reynolds 
number is increased to 10000, the downstream corner displays two secondary 
vortices [8]. It is possible to go higher in Reynolds number and still obtain steady 
2D solutions in a PLDC. The important thing to be noted here is that for a square 
PLDC upto Reynolds 10000 there is only one primary vortex. Multiple primary 
vortices start appearing only when the aspect ratio of the PLDC exceeds one [5].  

The non-dimensional numbers for flow in a square ALDC shown in fig 1 
are: Reynolds number (Re = UL/υ) and curvature δ = 2*L / {R1 + R2} defined in 
the same way as [1, 2]. It was shown in [3] that the 2D axisymmetric flow in an 
ALDC is unstable in the linear sense, at higher Reynolds numbers to disturbances 
of the centrifugal type, for all values of curvature δ. The critical Reynolds 
number was shown to reduce significantly with increasing δ. Unless otherwise 
specified, we only present results in the linearly stable regime. Fig. 2 is a contour 
plot of the steady-state streamfunction ψ with non-dimensional parameters δ = 
0.66, Re = 100 and a radially outward lid velocity. Comparing fig 4 to fig. 2, it is 
seen that at δ = 0.66 and Re = 100, the radial geometry hardly produces any 
noticeable difference in flow patterns and a PLDC and an ALDC looks almost 
the same. However, in fig. 5, for the same value of δ = 0.66 but Re = 500, the 
ALDC flow pattern now looks very different from a PLDC. The flow depicted in 
figs. 2 & 5 are in the subcritical range. It is seen from the figures that now there 
are 2 primary vortices in the flow (the corner eddies are still present although this 
might not be visible in the figure). As remarked in the previous paragraph, this is 
reminiscent of a PLDC with aspect ratio greater than 1 where too multiple 
primary vortices have been reported [5]. Since there are two non-dimensional 
parameters for an ALDC viz. Re and δ, it is interesting to see what the flow 
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would look like in the double limit Re → 0 and δ → ∞. In our study we find that 
as Re → 0, the curvature δ no matter how large, seems to have a negligible effect 
on the flow. We may conclude that the most significant effect of axisymmetry is 
through the convective term. As we increase Reynolds number, axisymmetry 
starts producing more pronounced effects on the flow. As an illustration, fig. 6 
shows the streamfunction plot for δ = 1.81 and Re = 1000. As seen from the 
figure, as we increase Reynolds no. the orientation of the two primary vortices 
start changing and they align themselves roughly along the diagonal of the 
cavity. This is in contrast to a PLDC with an aspect ratio greater than unity, 
where the multiple recirculation regions are always oriented parallel to the 
bottom. It should be however remembered that at δ = 1.81, the critical Reynolds 
no. is less than 530 [3] and hence fig. 6 represents a flow which is linearly 
unstable. Nevertheless it gives us an idea as to how at high Reynolds numbers, a 
radial geometry can produce substantial changes in internal flow separation. 
Interestingly the effects of axisymmetry at high Reynolds numbers are 
pronounced only when the lid is driven radially outwards. As can be seen from 
fig. 7 if the ALDC lid is driven radially inwards, the flow inside looks very 
similar to a PLDC [3]. That it should be so is not immediately obvious, because a 
radially inward accelerating flow at the lid has to be compensated by a 
corresponding outward decelerating flow at the bottom of the ALDC. We might 
thus expect flow-separation and development of multiple recirculation regions at 
the bottom where there is an outward flow, but the numerical results show none. 
The steady-state results presented in this section will be discussed more later in 
the paper. 

 
2.2. UNSTEADY RESULTS 
 
In this section we present unsteady results for the ALDC obtained from the 
solution of equations (1) and (2). The boundary conditions remain the same but 
instead of an impulsively started plate with constant radially outward velocity U, 
we have a radial sinusoidal velocity UsinΩt at the lid. The non-dimensional 
parameters governing the system are Reynolds number (Re = UL/υ), curvature δ 
= 2*L / {R1 + R2}) as before and additionally a Strouhal number (St = ΩL/U) 
arising out of the new time-scale 1/Ω. Fig. 3 shows a contour plot of the 
streamfunction at t = 2π + 2St/8, inside a PLDC where the non-dimensional 
parameters are Re = 400 and St = 1. The 2π additive is in order to look at the 
periodic flow after the initial transients. This result agrees well with the results 
presented in [9] and thus validates the unsteady numerical scheme [7] that we 
have used. We mention here that to the best of our knowledge, a study of the 
flow in an ALDC with an oscillating lid has not been reported in literature 
before. 
As in the previous section, before discussing the unsteady results for an ALDC, 
we briefly summarise the known results for a PLDC with a sinusoidally 
oscillating lid. Such results exist for example in [9, 14]. It was shown in [9] that 
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for very high St, the presence of the side-walls have almost no effect on the bulk 
of the flow and the effect of the motion of the lid was restricted to a thin-
boundary layer of constant thickness attached to the main wall, similar to Stokes 
second problem. On the other hand, for very low St, the flow looked like that 
inside a steady PLDC as discussed in the last section. For St ~ O(1), the flow 
displayed sensitivity to changes in Reynolds number. A complete parametric 
study of this unsteady problem is beyond the scope of this paper and here we 
restrict ourselves to St ~ O(1) and examine only the effects of varying Re and the 
curvature δ. Fig 9 presents a streamfunction plot at Re = 800, St = 1, δ = 0.66 at t 
= 2π. Notice that a separated region is present at the top right hand corner. The 
bias of the primary vortex towards the left corner is due to the effect of the 
inward motion of the lid in the second half of the previous cycle. Compare this to 
fig. 8 where the parameters are Re = 400, St = 1, δ = 0.66 at t = 2π. The effect of 
Reynolds no. on the flow separation region is clearly visible. However, these 
differences are minimal at other phases (fig 10). It should also be noted that fig 9, 
looks qualitatively the same as a PLDC with an oscillating lid. We have some 
results which indicate that if δ is pushed very high, then the flow inside an ALDC 
may start looking very different from a PLDC. However more careful cross-
checks are required to validate the accuracy of these results and hence these are 
not presented here.  
 
2.3. Discussion of results  
 
In this section we make an attempt to qualitatively interpret the results presented 
so far. To start with, we try to address the question of how are multiple primary 
eddies formed inside an ALDC at steady state, when the lid moves radially 
outwards with constant velocity. As demonstrated in [11], in cavities with finite 
aspect ratio, as the Reynolds no. is increased, the steady flow consists of a 
inviscid core of uniform vorticity with very thin viscous layers close to the walls. 
When the thicknesses of these viscous layers are small compared to the 
dimensions of the cavity, it is possible to interpret the formation of multiple 
recirculation regions inside the cavity as arising out of boundary layer separation. 
For example, as discussed by Schlichting [10], the corners are stagnation points 
where most of the kinetic energy of the outer inviscid flow gets converted into 
pressure. This imposes a very strong adverse pressure gradient on the boundary 
layer, which thus separates and causes the development of recirculation regions 
near the corners. Such a physical interpretation in terms of boundary layer 
separation was also suggested in [13]. However this explanation becomes 
unsatisfactory in the Stokes limit where we can no longer speak of boundary 
layers and viscosity starts becoming important everywhere in the cavity. It is well 
known that flow in a PLDC with a high aspect ratio exhibits multiple eddies even 
in the Stokes limit. Shankar [12] suggested a mechanism of formation of these 
multiple eddies. As the aspect ratio of the PLDC increases, the corner eddies 
grow in size and they merge. This is a continuous process in which corner eddies 
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merge to form primary eddies while new corner eddies are created. We are 
inclined to think that a similar mechanism could be at work even in an ALDC 
except that here the role of aspect ratio is played by curvature δ. However, we 
presently do not understand why the separating streamline orients itself roughly 
along the diagonal as the Reynolds number is increased. We have also made only 
a very brief study of the case of the oscillating lid. In order to interpret the 
unsteady results physically, more parametric studies are required. 
  
3.     Conclusions 
 
We have studied the effect of radial geometry on the steady and unsteady flow 
inside an ALDC. In the steady state, the effects of axisymmetry are pronounced 
only at high Reynolds numbers. The ALDC with multiple separated regions 
looks qualitatively like a PLDC whose aspect ratio is greater than unity. The 
process of creation of multiple eddies in an ALDC may happen in a way 
analogous to that suggested for a PLDC with high aspect ratio. The flow in an 
ALDC with the lid moving inwards looks the same as a PLDC.  

The high Reynolds nos. flows for the ALDC need to be checked with 
uniform vorticity models like that of Batchelor [15]. Similarly the high frequency 
and low frequency regimes need to be studied. It is expected that both Reynolds 
number and curvature would have a strong influence on the low frequency 
regimes where the flow is expected to closely resemble that of a steady ALDC. 
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Figure1. ALDC, Lid moving outwards 
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Figure2. ALDC, Re – 100 -  δ – 0.66 
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Figure 3. PLDC – St – 1 – Re – 400 – t = 2T/8 

 

 
 
Figure 4. PLDC – Re - 1000 – left to right 
 

 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
 

Figure 5. ALDC – Re - 500 – δ - 0.66 
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Figure 6. ALDC –Re – 1000 –δ – 1.81 
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Figure 7. ALDC –Re – 1000 –δ – 1.81 
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Figure 8. ALDC – Re - 400 – St – 1 - δ - 0.66 
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Figure 9. ALDC – Re - 800 – St – 1 - δ - 0.66 
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Figure 10. ALDC – Re - 800 – St – 1 - δ - 
0.66 – t = 6T/8 
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