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Abstract. A new strategy is proposed for blending RANS and LES approaches in a hybrid
model. To this purpose, the flow variables are decomposed in a RANS part (i.e. the averaged flow
field), a correction part that takes into account the turbulent large-scale fluctuations, and a third
part made of the unresolved or SGS fluctuations. The basic idea is to solve the RANS equations
in the whole computational domain and to correct the obtained averaged flow field by adding,
where the grid is adequately refined, the remaining resolved fluctuations. To obtain a model which
progressively switches from the RANS to the LES mode, a smooth blending function is introduced
to damp the correction term. Different definitions of the blending function are proposed and
investigated. The capabilities of the proposed hybrid approach are appraised in the simulation of
the flow around a square cylinder at a Reynolds number equal to Re = 22000, and in the simulation
of the flow around a circular cylinder at Re = 140000. Results are compared to those of other
hybrid simulations in the literature and to experimental data.
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1. Introduction

The most widely used approach for the simulation of high-Reynolds number tur-
bulent flows is the one based on the Reynolds-Averaged Navier-Stokes equations
(RANS). However, RANS models usually have difficulties in providing accurate pre-
dictions for flows with massive separations, as for instance the flow around bluff
bodies. An alternative approach is the Large-Eddy simulation (LES), which, for
massively separated flows, is generally more accurate, but also computationally more
expensive, than RANS. Moreover, the cost of LES simulations increases as the flow
Reynolds number is increased. Indeed, the grid has to be fine enough to resolve a
significant part of the turbulent scales, and this becomes particularly critical in the
near-wall regions. A new class of models has recently been proposed in the litera-
ture in which RANS and LES approaches are combined together in order to obtain
simulations as accurate as in the LES case but at reasonable computational costs.
Among the hybrid models described in the literature, the Detached Eddy Simulation
(DES) has received the largest attention. This approach [21] is generally based on
the Spalart-Allmaras RANS model, modified in such a way that, far from solid walls
and with refined grids, the simulation switches to the LES mode with a one-equation
SGS closure. Another hybrid approach has been recently proposed (LNS, [2]), in
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which the blending parameter depends on the values of the eddy-viscosity given by
a RANS model and of the SGS viscosity given by a LES closure. In practice, the
minimum of the two eddy-viscosities is used. An example of validation of LNS for
the simulation of bluff-body flows is given in [5].
A major difficulty in combining a standard RANS model with a LES one is due to
the fact that RANS does not naturally allow for fluctuations, due to its tendency to
damp them and to ”perpetuate itself”, as explained in [21]. On the other hand, LES
needs a significant level of fluctuations in order to model the flow accurately enough.
The abrupt passage from a RANS region to a LES one may produce the so-called
“modeled stress depletion” [21]. In the present work, a new strategy is proposed
for blending RANS and LES approaches in a hybrid model. To this purpose, as
in [12], the flow variables are decomposed in a RANS part (i.e. the averaged flow
field), a correction part that takes into account the turbulent large-scale fluctuations,
and a third part made of the unresolved or SGS fluctuations. The basic idea is to
solve the RANS equations in the whole computational domain and to correct the
obtained averaged flow field by adding, where the grid is adequately refined, the re-
maining resolved fluctuations. We search here for a hybridization strategy in which
the RANS and LES models are blended in the computational domain following a
given criterion. To this aim, a blending function is introduced, θ, which smoothly
varies between 0 and 1. The correction term which is added to the averaged flow
field is thus damped by a factor (1− θ), obtaining a model which coincides with the
RANS approach when θ = 1 and recovers the LES approach in the limit of θ → 0.
Following strictly these guidelines would imply that the two fields, RANS and LES
correction, need to be computed separately. In this first paper, we explore a single
field version and investigate several other ingredients of the proposed hybrid family.
In particular, three different definitions of the blending function θ are proposed and
will be examined in this paper. They are based on the ratios between (i) two eddy
viscosities, (ii) two characteristic length scales and (iii) two characteristic time scales
given by the RANS and the LES models, respectively. The RANS model used in
the proposed hybrid approach is the standard k − ε model [13] or a low-Reynolds
version [7], while for the LES part the Variational Multi-Scale approach (VMS) is
adopted [9]. The proposed hybridization strategy permits a natural integration of
the VMS concept, while this is not the case for other existing approaches, as LNS
or DES. The VMS approach can be compared in terms of accuracy to the dynamic
Smagorinsky model, but its computational cost is definitely lower and comparable to
that of the simple Smagorinsky model (see [11]). Extension of VMS to unstructured
meshes [11] [19] is a further step to industrial applications.
The capabilities of the proposed hybrid approach are appraised, first, in the simula-
tion of the flow around a square cylinder at a Reynolds number, based on the far-field
velocity and on the side length of the cylinder, equal to Re = 22000. Different sim-
ulations have been carried out by varying the grid refinement and the definition of
the blending function. The obtained results are compared with experimental data,
the results of LES and DES simulations in the literature, and with those obtained
by the same code through the LNS approach. The proposed model is also applied to
the simulation of the flow around a circular cylinder at Re = 140000 (based on the
far-field velocity and the cylinder diameter). Comparisons with experimental data
and DES simulations in the literature are provided also for this latter test case.
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2. Hybrid RANS/LES coupling

The Navier-Stokes equations for compressible flows of (calorically and thermally)
perfect Newtonian gases are considered here, in conservative form and using the
following variables: density (ρ), momentum (ρui, i = 1, 2, 3) and total energy per
unit volume (E = ρe + 1/2ρuiui, e being the internal energy).
As in [12], the following decomposition of the flow variables is adopted:

W = < W >
︸ ︷︷ ︸

RANS

+ W c
︸︷︷︸

correction

+W SGS

where < W > are the RANS flow variables, obtained by applying an averaging
operator to the Navier-Stokes equations, W c are the remaining resolved fluctuations
(i.e. < W > +W c are the flow variables in LES) and W SGS are the unresolved or
SGS fluctuations.
If we write the Navier-Stokes equations in the following compact conservative form:

∂W

∂t
+ ∇ · F (W ) = 0

in which F represents both the viscous and the convective fluxes, for the averaged
flow 〈W 〉 we get:

∂〈W 〉

∂t
+ ∇ · F (〈W 〉) = −τRANS(〈W 〉) (1)

where τRANS(〈W 〉) is the closure term given by a RANS turbulence model.
As well known, by applying a filtering operator to the Navier-Stokes equations, the
LES equations are obtained, which can be written as follows:

∂〈W 〉 + W c

∂t
+ ∇ · F (〈W 〉 + W c) = −τLES(〈W 〉 + W c) (2)

where τLES is the SGS term.
An equation for the resolved fluctuations W c can thus be derived (see also [12]):

∂W c

∂t
+ ∇ · F (〈W 〉 + W c) − ∇ · F (〈W 〉) = τRANS(〈W 〉) − τLES(〈W 〉 + W c) (3)

The basic idea of the proposed hybrid model is to solve Eq. (1) in the whole domain
and to correct the obtained averaged flow by adding the remaining resolved fluctu-
ations (computed through Eq. (3)), wherever the grid resolution is adequate for a
LES. To identify the regions where the additional fluctuations must be computed,
we introduce a blending function, θ, smoothly varying between 0 and 1. When θ = 1,
no correction to 〈W 〉 is computed and, thus, the RANS approach is recovered. Con-
versely, wherever θ < 1, additional resolved fluctuations are computed; in the limit
of θ → 0 we want to recover a full LES approach. Thus, the following equation is
used here for the correction term:

∂W c

∂t
+ ∇·F (〈W 〉+W c) − ∇·F (〈W 〉) = (1−θ)

[

τRANS(〈W 〉) − τLES(〈W 〉 + W c)
]

(4)

Note that for θ → 1 the RANS limit is actually recovered; indeed, for θ = 1 the
right-hand side of Eq. (4) vanishes and, hence, a trivial solution is W c = 0. As

3



M.V. SALVETTI ET AL.

required, for θ = 0 Eq. (4) becomes identical to Eq. (3) and the remaining resolved
fluctuations are added to the averaged flow; the model, thus, works in LES mode.
For θ going from 1 to 0, i.e. when, following the definition of the blending function
(see Sec. 5.), the grid resolution is intermediate between one adequate for RANS
and one adequate for LES, the righthandside term in Eq. (4) is damped through
multiplication by (1 − θ). Although it could seem rather arbitrary from a physical
point of view, this is aimed to obtain a smooth transition between RANS and LES.
More specifically, we wish to obtain a progressive addition of fluctuations when the
grid resolution increases and the model switches from the RANS to the LES mode.
Summarizing, the ingredients of the proposed approach are: a RANS closure model,
a SGS model for LES and the definition of the blending function. These will be
described in Secs. 4 and 5.

3. Basic numerical ingredients

The governing equations are discretized in space using a mixed finite-volume/finite-
element method applied to unstructured tetrahedrizations. The adopted scheme is
vertex centered, i.e. all degrees of freedom are located at the vertexes. P1 Galerkin
finite elements are used to discretize the diffusive terms. A dual finite-volume grid
is obtained by building a cell Ci around each vertex i. The convective fluxes are
discretized in terms of fluxes through the common boundaries shared by neighboring
cells. The Roe scheme [16] represents the basic upwind component for the numerical
evaluation of the convective fluxes. A Turkel-type preconditioning term is introduced
to avoid accuracy problems at low Mach numbers [8]. A parameter γs multiplies the
upwind part of the scheme and permits a direct control of the numerical viscosity,
leading to a full upwind scheme for γs = 1 and to a centered scheme when γs =
0. The MUSCL linear reconstruction method (“Monotone Upwind Schemes for
Conservation Laws” [23]) is employed to increase the order of accuracy of the Roe
scheme. A reconstruction using a combination of different families of approximate
gradients is adopted [4], which allows a numerical dissipation made of sixth-order
space derivatives, and, thus, concentrated on a narrow-band of the highest resolved
frequencies, to be obtained. This is important in LES simulations to limit as far
as possible the interactions between numerical and SGS dissipation, which could
deteriorate the accuracy of the results.
An implicit time marching algorithm is used, based on a second-order time-accurate
backward difference scheme.
More details on the numerical ingredients used in the present work can be found in
[4] and [6].

4. RANS and VMS-LES closures

As far the closure of the RANS equations is concerned, the standard k−ε model [13]
is used, in which the Reynolds stress tensor is modeled by introducing a turbulent
eddy-viscosity µt, defined as a function of the turbulent kinetic energy k and of the
turbulent dissipation rate of energy, ε, as follows:

µt = Cµρ
k2

ε
(5)
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where Cµ is a model parameter, set here equal to the classical value of 0.09 and k and
ε are obtained from the corresponding modeled transport equations (see Ref. [13]).
The Low Reynolds k − ε model proposed in [7] is also considered. The Reynolds
stress tensor has the same form of that used in the standard k − ε model but here
the turbulent eddy-viscosity µt given by Eq. (5) is multiplied by a damping function
fµ, and k and ε are determined by ad-hoc modeled transport equations (see [7]).
For the LES mode, we wish to recover the Variational Multi-Scale approach [9], in
which the flow variables are decomposed as follows:

W = W
︸︷︷︸

LRS

+ W ′

︸︷︷︸

SRS

+W SGS (6)

where W are the large resolved scales (LRS) and W ′ are the small resolved scales
(SRS). This decomposition is obtained by variational projection in the LRS and SRS
spaces respectively. In the present study, we follow the VMS approach proposed in
[11] for the simulation of compressible turbulent flows through a finite volume/finite
element discretization on unstructured tetrahedral grids. Let χl and φl be the N
finite-volume and finite-element basis functions associated to the used grid. In order
to obtain the VMS flow decomposition, the finite dimensional spaces VFV and VFE,
respectively spanned by χl and φl, can be in turn decomposed in VFV and V ′

FV and
in VFE and V ′

FE [11], VFV and V ′

FV being the finite volume spaces associated to the
largest and smallest resolved scales, spanned by the basis functions χl and χ′

l; VFE

and V ′

FE are the finite element analogous. In [11] a projector operator P in the LRS
space is defined by spatial average on macro cells, obtained by agglomeration.
Finally, a key feature of the VMS approach is that the SGS model is added only to
the smallest resolved scales. As in [11], the Smagorinsky model is used, and, hence,
the SGS terms are discretized analogously to the viscous fluxes. Thus, the Galerkin
projection of Eq. (2) becomes:

(

∂〈W 〉 + W c

∂t
, χl

)

+ (∇ · Fc(〈W 〉 + W c), χl) +

(∇ · Fv(〈W 〉 + W c), φl) = −
(

τLES(W ′), φ′

l

)

l = 1, N
(7)

in which τLES is modeled by introducing a SGS eddy-viscosity µs, having the fol-
lowing expression:

µs = ρ′Cs∆
2
√

S ′

ijS
′

ij (8)

where Cs is the model input parameter, S ′

ij is the strain-rate tensor (computed in the
VMS approach as a function of W ′) and ∆ is a length which should be representative
of the size of the resolved turbulent scales. Here, ∆ has been selected as V ol(i)1/3

(V ol(i) being the volume of the i-th tetrahedron) and Cs has been set equal to 0.1.
Finally, the Galerkin projection of Eqs. (1) and (4) for the computation of 〈W 〉 and
of the additional fluctuations in the proposed hybrid model become respectively:

(

∂〈W 〉

∂t
, χl

)

+ (∇ · Fc(〈W 〉), χl) + (∇ · Fv(〈W 〉), φl) =

−
(

τRANS(〈W 〉), φl

)

l = 1, N
(9)

(

∂W c

∂t
, χl

)

+ (∇ · Fc(〈W 〉 + W c), χl) − (∇ · Fc(〈W 〉), χl) +

(∇ · Fv(W
c), φl) = (1 − θ)

[(

τRANS(〈W 〉), φl

)

−
(

τLES(W ′), φ′

l

)]

l = 1, N
(10)
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5. Definition of the blending function and simplified model

As a possible choice for θ, the following function is used in the present study:

θ = F (ξ) = tanh(ξ2) (11)

where ξ is the blending parameter, which should indicate whether the grid resolu-
tion is fine enough to resolve a significant part of the turbulence fluctuations, i.e. to
obtain a LES-like simulation. The choice of the blending parameter is clearly a key
point for the definition of the present hybrid model. In the present study, different
options are proposed and investigated, namely: the ratio between the eddy viscosi-
ties given by the LES and the RANS closures, ξV R = µs/µt, which is also used as a
blending parameter in LNS Ref. [2], ξLR = ∆/lRANS, lRANS being a typical length
in the RANS approach, i.e. lRANS = k3/2ǫ−1 and, finally, ξTR = tLES/tRANS, tLES

and tRANS being characteristic times of the LES and RANS approaches respectively,
tLES = (SijSij)

−1/2 and tRANS = kǫ−1.
To avoid the solution of two different systems of PDEs and the consequent increase
of required computational resources, Eqs. (9) and (10) can be recast together as:

(

∂W

∂t
, χl

)

+ (∇ · Fc(W ), χl) + (∇ · Fv(W ), φl) =

−θ
(

τRANS(〈W 〉), φl

)

− (1 − θ)
(

τLES(W ′), φ′

l

)

l = 1, N
(12)

Clearly, if only Eq. (12) is solved, 〈W 〉 is not available at each time step. Two
different options are possible: either to use an approximation of 〈W 〉 obtained by
averaging and smoothing of W , in the spirit of VMS, or to simply use in Eq. (12)
τRANS(W ). The second option is adopted here as a first approximation.

6. Hybrid simulations of the flow around a square cylinder

The flow around a square cylinder is considered at a Reynolds number, based on
the cylinder side length, D, and on the free-stream velocity, is equal to 22000.
The dimensions of the computational domain are reported in Tab. 1. They are
equal to those employed in the LNS simulation in [5]. Two different unstructured
grids made of tetrahedral elements (grid GR1 and GR2 in Tab. 1) are used for the
simulations. Note that both grids are significantly coarser than those typically used
in the literature for LES, but also for DES simulations, of this flow. We chose to use
coarse grids in order to have the model working in hybrid mode, since both the LNS
and the proposed approach tend to LES if the grid is adequately refined (see [5]).
Approximate boundary conditions, based on the Reichardt wall-law, are applied at
the solid walls. This type of wall treatment has been successfully used in previous
LES (see e.g. [4], [11]) and LNS [5] simulations of the same flow. At the inflow, the
flow is assumed to be undisturbed and radiative boundary conditions are used at
the outflow (see [5]). On the other surfaces (y = ±Hy, z = ±Hz) slip conditions are
imposed. Following the LNS work in Ref. [5], the numerical parameter γs, which
controls the amount of numerical viscosity introduced in the simulation, has been
set equal to 0.1 for GR1 and 0.5 for GR2, in order to obtain stable simulations.
The simulations have been implicitly advanced in time, with a maximum CFL num-
ber ranging from 10 to 20. In a previous work (Ref. [5]), it was shown that no
significant information is lost in time provided that CFL≤ 25.
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li/D lo/D Hy/D Hz/D N. nodes N. elements

Gr1 4.5 9.5 7 9.75 8.3 × 104 4.75 × 105

Gr2 4.5 9.5 7 9.75 3.5 × 104 1.9 × 105

Table 1. Main features of the computational domain and grids for the square cylinder
test case. li is the streamwise distance between the inflow and the cylinder center. lo is
the streamwise distance between the outflow and the cylinder center. Hy and Hz are the
lateral and spanwise dimensions of the domain.

Simulations Grid Model ξ Cd C ′

d C ′

l St lr
LNS1 Gr1 LNS – 2.11 0.116 0.654 0.131 1.15
LNS2 Gr2 LNS – 2.07 0.087 0.685 0.13 1.19

CHM1 Gr1 CHM VR 1.95 0.107 0.81 0.13 1.37
CHM2 Gr1 CHM TR 2.01 0.117 0.792 0.131 1.16
CHM3 Gr2 CHM VR 2.01 0.074 0.58 0.129 1.1
CHM4 Gr2 CHM TR 2.01 0.071 0.6 0.131 1.21
CHM5 Gr2 CHM LR 2.01 0.083 0.63 0.128 1.1

LES [5] Gr2 [20] – 1.71 0.02 0.31 0.137 2.8
RANS [5] Gr2 k − ε – 1.53 0.01 0.20 0.117 2.38
DES [18] – DES – 2.42-2.57 0.28-0.68 1.36-1.55 0.09-0.13 1.16-1.37
DES [14] – DES – 2.18 – – 0.134 0.81

Exp. [3] – – – 2.28 – 1.2 0.13 –
Exp. [15] – – – 2.1 – – 0.132 1.4

Table 2. Simulation parameters and main bulk flow quantities for the square cylinder test
case.

For both grids, the computations have been carried out using the LNS model and
the new proposed hybrid model (Continuous Hybrid Model, CHM) with different
definitions of the blending parameter. The parameters characterizing the different
simulations are summarized in Tab. 2. Tab. 2 also shows the main bulk flow
parameters, viz. the mean drag coefficient Cd, the r.m.s. values of the drag and lift
coefficients, C ′

d and C ′

l , the vortex shedding frequency adimensionalized with D and
the free-stream velocity, St, and the mean recirculation bubble length, lr. Let us
analyze, first, the sensitivity to grid refinement by comparing CHM1 with CHM3
and CHM2 with CHM4. The most significant differences are in the force r.m.s.,
and, in particular, larger fluctuations are found for the more refined grid. This is
consistent with the basic idea of the proposed model, i.e. to progressively add more
fluctuations as the grid resolution increases. As for the definition of the blending
parameter, its effect on the computed flow bulk parameters is rather small, the most
sensitive quantity being lr with a variation of 15% between CHM1 and CHM2. The
overall agreement with the experimental values is fairly good, especially reminding
the very coarse grid resolution of the present simulations. Note that, as reported in
Tab. 2, LES and RANS simulations carried out on the same grid give inaccurate
predictions. As previously mentioned, the results of DES reported in Tab. 2 are
obtained with significantly finer grid resolution.

Finally, the behavior of the proposed hybrid model in the field (not shown here for
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Simulations Re ξ Cd C ′

l St lr θsep

CHM1 1.4 105 VR 0.62 0.083 0.30 1.20 108
CHM2 1.4 105 LR 0.62 0.083 0.30 1.19 108

DES [22] 1.4 105 – 0.57-0.65 0.08-0.1 0.28-0.31 1.1 -1.4 93-99
DES [14] 1.4 105 – 0.6-0.81 – 0.29-0.3 0.6-0.81 101-105

Exp. [10] 3.8 106 – 0.58 – 0.25 – 110
Exp. [1] 5 106 – 0.7 – – – 112
Exp. [17] 8 106 – 0.52 0.06 0.28 – –

Table 3. Simulation parameters and main bulk flow quantities for the circular cylinder
test case. Same notations as in Tab. 2. θsep is the separation angle.

the sake of brevity) is very similar for all the considered definitions of the blending
parameter and grids. In particular, the model works in the LES mode in the wake,
in the RANS mode in the shear-layers detaching from the cylinder corners, while
damped fluctuations are added in a layer at the wake edges.

7. Hybrid simulations of the flow around a circular cylinder

The proposed approach has also been applied to the simulation of the flow around
a circular cylinder at Re = 140000 (based on the far-field velocity and the cylinder
diameter). The domain dimensions are li/D = 5, lo/D = 15, Hy/D = 7 and
Hz/D = 2 (the symbols are the same as in Tab. 1). The used grid has 4.6×105

nodes. The inflow conditions are the same as in the DES simulations of [22]. In
particular, the flow is assumed to be highly turbulent by setting the inflow value
of eddy-viscosity to about 5 times the molecular viscosity as in the DES simulation
of [22]. This setting corresponds to a free-stream turbulence level Tu = u′2/U0

(where u′ is the inlet fluctuation velocity and U0 is the free-stream mean velocity)
of the order of 4%. As discussed also in [22], the effect of such a high level of
free-stream turbulence is to make the boundary layer almost entirely turbulent also
at the relatively moderate considered Reynolds number. The boundary treatment
is the same as for the square cylinder test-case, except that the flow is assumed
to be periodic in the spanwise direction in order to simulate a cylinder of infinite
spanwise length. The computations have been carried out using the new proposed
hybrid model with two different definition of the blending parameter(see Tab. 3).
The RANS model is that based on the Low Reynolds approach discussed in Sec.
4. The numerical parameter γs, which controls the amount of numerical viscosity
introduced in the simulation, has been set equal to 0.2.
The main flow bulk parameters obtained in the present simulations are summarized
in Tab. 3, together with the results of DES simulations in the literature and some
experimental data. The results are also for this case practically insensitive to the
definition of the blending parameter. The agreement with the DES results is fairly
good. As for the comparison with the experiments, as also stated in [22], since our
simulations are characterized by a high level of turbulence intensity at the inflow, it
make sense to compare the results with experiments at higher Reynolds number, in
which, although the level of turbulence intensity of the incoming flow is very low,
the transition to turbulence of the boundary layer occurs upstream separation. The
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Figure 1. (a) Mean pressure coefficient on the cylinder (simulation CHM1) (b) Instanta-
neous isocontours of spanwise vorticity (simulation CHM2). The black and white lines are
the isolines of θ = 0.1 and θ = 0.9.

agreement with these high Re experiments is indeed fairly good, as shown in Tab.
3 and Fig. 1a. Finally, the behavior of the hybridization strategy in the field is
similar to that obtained for the square cylinder test case; indeed, as shown in Fig.
1b, the model works in RANS mode in the boundary layer and in the shear-layers
detaching from the cylinder, while in the wake a full LES correction is recovered.

8. Concluding remarks

A new strategy for blending RANS and LES has been proposed, which is based
on a decomposition of the flow variables in a RANS part and a correction part,
which takes into account the resolved fluctuations. To identify the zones in which
the correction must be computed and added to the RANS part, a blending function
is introduced, such that the model works in RANS mode where the grid is coarse
and tends with continuity to LES as the grid refinement becomes adequate. For the
closure of the LES part, the VMS approach has been integrated in the proposed
hybridization strategy. As a first choice, we use here a simplified version of the
model, in which only one set of unknowns is computed. The proposed method has
been applied to the hybrid simulations of the flows around two different bluff-bodies,
viz. a square cylinder and a circular one. The results are promising, both for the
accuracy of the prediction of the bulk flow parameters, which is in good agreement
with experimental data and the results of different simulations in the literature, and
for the behavior of the blending function, which shows a sensible distribution in the
field.
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