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Abstract. A tensorial eddy-viscosity turbulence model is developed in order to take into account
of the structural anisotropy appearing between the mean strain-rate tensor and the Reynolds turbu-
lent stresses in strongly detached high Reynolds number flows. In the framework of the Organised
Eddy Simulation, a physical investigation of the misalignment of these two tensor principal direc-
tions is performed by means of phase-averaged 3C-PIV measurements in the near-wake of a circular
cylinder at Reynolds number 1.4 × 105. Considering the stress-strain misalignment as a local sign
of the turbulence non-equilibrium, anisotropic criteria are derived. This leads to a tensorial eddy-
viscosity concept which is introduced in the turbulent stress constitutive law. Additional transport
equations for the misalignment criteria are derived from a degenerated SSG second order closure
scheme. A two-dimensional version of the present model is implemented in the NSMB solver on
the basis of a two-equation k− ε isotropic OES model. Numerical simulation results are compared
to an experimental dataset concerning the incompressible flow past a NACA0012 airfoil at 20o

degrees of incidence and Reynolds number 105.

Key words: Turbulence modeling, advanced URANS methods, Anisotropic Organised Eddy Sim-
ulation.

1. Introduction

In the context of high-Reynolds number turbulence modeling and especially in the
case of parietal flows, recent advances like Large Eddy Simulation (LES) and hy-
brid methods (Detached Eddy Simulation, DES) have considerably improved the
physical relevance of the numerical simulation. However, the LES approach is still
limited to the low Reynolds number range concerning wall flows and the Unsteady
Reynolds Averaged Navier-Stokes (URANS) approach remains a widespread and ro-
bust methodology for complex flow computation particularly in the near-wall region.
Second-order closure schemes (Differential Reynolds Stress Modeling, DRSM) can
provide an efficient simulation of turbulent stresses. Nonetheless, from a computa-
tional point of view, the main drawbacks of such approaches are a higher cost for
unsteady and three-dimensional configurations and above all, numerical instabilities
which imply the addition artificial dissipation terms. The present study is founded
on the Organised Eddy Simulation (OES) methodology [1][2][3] which consists in
distinguishing the flow structures to model according to their coherent or chaotic
aspect instead of their size as in LES. The improvment of the advanced first order
statistical approaches in the context of OES, especially in the sense of a realistic
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simulation of the anisotropy tensor for non-equilibrium flows, represents one of the
main objectives of the present development.
Concerning the first order statistical turbulence modeling, the linear eddy-viscosity
models utilise the Boussinesq approximation [4] which establishes a linear relation
between the Reynolds stresses and the strain-rate by means of a scalar eddy-viscosity
concept. The Boussinesq law can be written as follows under the incompressibility
assumption:

−
uiuj

k
+

2

3
δij = −aij = 2

νt

k
Sij,

where uiui are the turbulent stresses, k is the turbulent kinetic energy (k = 1
2
uiui), δij

is Kronecker symbol and S the mean strain-rate tensor, defined by Sij = 1
2

(

∂Ui

∂xj
+

∂Uj

∂xi

)

.

Ui is the mean flow velocity. νt is the scalar eddy-viscosity that is often expressed
by means of the turbulence length and time scales as νt = Cµk

2/ε , where ε is
turbulence dissipation rate.
The Boussinesq approximation assumes, among others, that the principal direc-
tions of the two tensors −a and S always remain collinear. This leads to an over-
production of turbulent kinetic energy [5] especially in flow regions upstream of the
detachment, where the strain-rate is high and the flow is laminar [6][7].
The Non-Linear Eddy-Viscosity Models (NLEVM) provides modified behaviour laws
which attempt to overcome these limitations. The associated constitutive laws are
derived from a complete tensorial basis of the turbulent stresses [8][9] involving
quadratic or cubic combinations of the strain and vorticity tensors. The Explicit
Algebraic Stress Models which are derived from algebraic forms of the turbulent
stresses issued from the DRSM [10][11][12][13] provide improved results for non-
equilibrium flows but imply significant calibration processes according to the flow
configuration of interest [14][15].
In the framework of OES methods, an alternative to NLEVM is suggested to derive
a tensorial eddy-viscosity model sensitised for non-equilibrium turbulence [16]. As
discussed in the present paper, the non-equilibrium can be illustrated by means of
stress-strain misalignment [17], among other concepts, as well as by the ratio of the
mean flow time-scale over the turbulence time-scale [11]. A selective reduction of the
eddy-diffusion coefficient, varying according to the non-equilibrium flow regions and
the coherent flow structures, to reach an improved prediction of the turbulence pro-
duction in respect of the flow physics, is expected. As presented in the first section,
the analysis of the stress-strain behaviour is based on a detailed high-Reynolds PIV
experiment concerning the incompressible flow past a circular cylinder at Reynolds
number 1.4 × 105 in high blockage and aspect ratios [18]. The phase-averaged tur-
bulence properties are considered, allowing distinction of the organised coherent
physical process from the random turbulence. Furthermore, anisotropic misalign-
ment criteria are investigated and a tensorial definition of the eddy-viscosity is put
forward, leading to a new Reynolds stress constitutive law. Transport equations for
these criteria are derived from the Speziale, Sarkar and Gatski second order clo-
sure scheme [19]. The predictive capacities of this anisotropy resolving approach
are examined in the last section by comparison of two-dimensional numerical sim-
ulation results issued from NSMB solver with an experimental dataset concerning
the incompressible flow around a NACA0012 airfoil at 20o degrees of incidence and
Reynolds number 105.
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2. Stress-strain anisotropy as a non-equilibrium criterion

2.1. The Organised Eddy Simulation framework

The OES methodology consists in a separation of the turbulent kinetic energy spec-
trum into a resolved part corresponding to organised flow structures and a modeled
part associated with chaotic fluctuations. Experimental studies emphasised a mod-
ification the spectrum to be modeled in the inertial region where coherent struc-
tures and random turbulence interact [2][3]. This modification, which illustrates the
non-equilibrium compared to the equilibrium turbulence described by Kolmogorov’s
statistical theory, implies a recalibration of the turbulence time and lengh scales
in URANS methodology. The OES approach proposed a modification of the diffu-
sivity constant Cµ in two-equation closure schemes, using an isotropic Boussinesq
law as a first step, and this methodology reached an efficient prediction of mas-
sively detached unsteady turbulent flows around bodies. From a physical point of
view, a consequence of the non-equilibrium is the misalignment observed between
the Reynolds stress and mean strain-rate tensor. In the present study, the structural
properties of this misalignment are used to reach a more relevant prediction of the
non-equilibrium turbulence physics.

2.2. An investigation of the stress-strain misalignment via 3C-PIV

in the cylinder wake

Figure 1. Flow configuration.

The experiment has been carried out in the
wind tunnel S1 of IMFT. The channel has
a 670 × 670mm2 cross section. The cylin-
der spans the width of the channel without
endplates and has a diameter D of 140mm,
giving an aspect ratio L/D = 4.8 and a
blockage coefficient D/H = 0.208. The
upstream velocity U0 at the centre of the
channel is 15m/s, therefore the Reynolds
number based on the upstream velocity
and the cylinder diameter D is 1.4 × 105.
The free stream turbulence intensity, mea-
sured by hot wire technique in the inlet was found 1.5%. The three-component
measurements have been performed by means of stereoscopic PIV. The procedure
used is reported in [18]. In the present study, the median plan has been considered
at half distance spanwise and located in the near-wake region (Fig. 1).

The near periodic nature of the flow, due to the von Kármán vortices, allows the
definition of a phase. In the following all quantities are phase-averaged. Angles
between the principal directions of the strain-rate and turbulence anisotropy tensors
are quantified. The main coherent vortex regions are delimited by the Q criterion
[20]. The first principal directions of each tensor are represented in Fig. 2. In specific
flow regions their misalignment becomes predominant. The largest misalignment is
observed near the vortex center (x1/D = 1, x2/D = 0.03) in Fig. 2(a) for instance.
The best alignment is reached in free shear flow regions.
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Figure 2. −a (dashed) and S (solid) first principal directions and Q criterion iso-contours
at phases (a) ϕ = 50o and (b) ϕ = 140o.
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Figure 3. Angle variation between −a and
S first principal directions along the three
lines in bold in Fig. 2(a).

In Fig. 3 the angle between the direc-
tions of va

1 and vS
1 is represented for given

ordinates (cf. bold lines in Fig. 2(a)).
In spite of the measurement noise induced
by PIV technic, the solid and dashed-
dotted curves (x2/D = −0.21 and x2/D =
−0.06, respectively) confirm the misalign-
ment peak near the vortex center (up to
50o around x1/D = 1) whereas the dashed
curve (x2/D = 0.39) demonstrates a quasi-
alignment near the saddle point and in free
flow regions (beyond x1/D = 1.5).

2.3. An anisotropic misalignment criterion

The analysis of the high misalignment zones allows to locate precisely the validity
regions of the Boussinesq isotropic law. As a consequence, in the perspective of an
improvment of the Reynolds tensor constitutive law, it seems judicious to take into
account of these effects. However, a direct monitoring of the misalignment between
the three principal directions of the two tensors implies an assumed knowledge about
these tensors which does not make sense since the stress tensor is derived from
the constitutive law. In this context, a misalignment criterion is defined as the
correlation rate between the projection of the anisotropy tensor onto the eigen basis
of the strain-rate tensor and the corresponding eigenvector of S. Without any
estimation of the eigenvectors of −a, this directional criterion can provide sufficient
information about the alignment between the principal directions of −a and vS

i , in
each space direction:

Ci = −
ajk

(

vS
i

)

k

(

vS
i

)

j

‖avS
i ‖

for i = 1, 2, 3, where ‖.‖ is the euclidian norm.

The Ci coefficients gives an anisotropic knowledge which enables to describe lo-
cally the distortion between the stress and strain-rate tensors, allowing a distinction
between the global and planar misalignment as presented schematically in Fig. 4.
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Figure 4. Ci anisotropic criterion dis-
criminates (a) planar and (b) global mis-
alignments.

As can be shown in the present exper-
iment, the criterion decreases in highly-
strained shear flow regions and especially
near the vortex center whereas it remains
maximum when the two principal tensorial
directions are aligned. Moreover, this di-
rectional criterion is “advectable” through
specific transport equations that can be de-
rived from DRSM as suggested in the next
section.

3. An anisotropic first order eddy-viscosity model

3.1. The tensorial eddy-viscosity concept

The previous analysis concerning the specific decorrelations between Reynolds stress
and mean strain-rate tensors in each space direction demonstrates the relevance of
a constitutive law taking account of the individual contribution of each element of a
spectral decomposition which is applied to the strain-rate tensor. The following def-
inition of an anisotropic eddy-diffusion coefficient can be suggested by an extension
of the scalar Cµ definition, for i = 1, 2, 3:

Cµi
=

∣

∣

∣
ajk

(

vS
i

)

k

(

vS
i

)

j

∣

∣

∣

ηi

= |CV i|
ε

k
where CV i = −

ajk

(

vS
i

)

k

(

vS
i

)

j

|λS
i |

.

ηi =
k|λS

i |
ε

is a vectorial version of η = k‖S‖
ε

mean flow/turbulent time scale rate which
emphasises the non-equilibrium turbulence regions [11]. Whenever η is higher than
3.3 approximately, the non-equilibrium turbulence becomes predominant.
Therefore a consistent definition of the eddy-viscosity as a symmetric tensor νtt is
suggested on the basis of a positive directional eddy-viscosity νtd :

(νtt)ij = (νtd)k

(

vS
k

)

i

(

vS
k

)

j
with (νtd)i = |CV i| k. (1)

Expression (1) leads to a weighted summation of S spectral decomposition:

Sik (νtt)kj = (νtd)l λ
S
l

(

vS
l

)

i

(

vS
l

)

j
= (νtd)l (Sl)ij , (2)

and thus, the linear EVM behaviour law can be generalised as:

−uiuj +
2

3
kδij = 2Sik (νtt)kj −

2

3
Rδij, (3)

where R = (νtd)i λ
S
i is the trace of Sik (νtt)kj. From expression (2), the symmetry

property of the turbulence anisotropy tensor is ensured. Expression (3) leads to the
following generalization of averaged Navier-Stokes momentum equations:

DUi

Dt
=

∂

∂xj

(

ν

(

∂Ui

∂xj

+
∂Uj

∂xi

)

+ (νtt)kj

(

∂Ui

∂xk

+
∂Uk

∂xi

)

−
2

3
(k + R) δij

)

−
1

ρ

∂P

∂xi

.

The tensorial definition enables a selective reduction of the effect of one (or more)
elements of the strain-rate tensor spectral decomposition with respect to the corre-
sponding physical alignment (or misalignment) between the associated principal di-
rections. Moreover, if a perfect alignment is observed in an equilibrium and isotropic
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strain region the tensorial expression degenerates into a classical Boussinesq-like
scalar model.

3.2. “Experimental” validation
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Figure 5. Comparison between measured
(solid) and modeled (dashed) Reynolds
stresses: shear layer (red) and wake
(black).

Comparison between normal and shear
Reynolds stresses evaluated from the PIV
experiment and from modelling via (3)
and measured stress tensor at two location
points and over a period of vortex shedding
is presented in Fig. 5 and can be regarded
as an “experimental” validation. The mod-
elled quantities present a good match with
the experiment for both normal and shear
Reynolds stresses. This is verified when
examining the complete fields at a given
phase angle (Fig. 6): despite slight differ-
ences in shear flow region, the predictive
capacities of the tensorial constitutive law
are confirmed.
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Figure 6. Comparison between phase-averaged Reynolds stresses uiuj obtained directly
from the PIV experiment (a) shear and (c) normal, and those evaluated via equation (3)
and experimental strain-rate tensor (b) shear and (d) normal at phase ϕ = 50o.
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3.3. An anisotropic first order closure scheme

From a degeneration of the Speziale, Sarkar and Gatski second order closure scheme
[19], three advection equations are derived to transport the CV i coefficients as state
variables of the physical system. For q = 1, 2, 3:

DCV q

Dt
= −

1
∣

∣λS
q

∣

∣

(

(Vq)ij

Daij

Dt
+ aij

D (Vq)ij

Dt
+ CV q

D
∣

∣λS
q

∣

∣

Dt

)

with (Vq)ij
=
(

vS
q

)

i

(

vS
q

)

j
,

which leads by introducing the SSG modeling for the pressure/strain correlation in
a similar way as [21] for a non-directional misalignment:

DCV q

Dt
=

(

4

3
+ c∗3II

1

2

a − c3

)

(Vq)ij
Sij

∣

∣λS
q

∣

∣

+ (2 − 2c4)
(Vq)ij

aikSjk
∣

∣λS
q

∣

∣

−
c2

ηq

(Vq)ij
aikakj

+ (2 − 2c5)
(Vq)ij

aikΩjk
∣

∣λS
q

∣

∣

+ (1 − c1)
ε

k
CV q + (1 + c∗1) CV qaijSij +

c2IIa

3ηq

+
2 (c4 − 1)

3

aijSij
∣

∣λS
q

∣

∣

−
1
∣

∣λS
q

∣

∣

(

aij

D (Vq)ij

Dt
+ CV q

D
∣

∣λS
q

∣

∣

Dt

)

+ DCV q

where DCV q , the diffusion term can be approximated by:

DCV q =
∂

∂xi

((

ν +
(νtt)ij

σCV q

)

∂CV q

∂xj

)

.

IIa = aijaij , and the seven constants ci and c∗i are reported in Tab. 1.

Table 1. SSG second order closure scheme constants [19].

c1 c∗1 c2 c3 c∗3 c4 c5

1.7 0.90 1.05 0.8 0.65 0.625 0.2

Assuming a similarity with the diffusion term of k transport equation, σCV q
coeffi-

cient can be set, firstly, to the value of one.

4. Numerical results

4.1. Implementation in the Navier-Stokes Multi-Block solver

On the basis of the k − ε OES turbulence model, the previous transport equations
were implemented in the Navier-Stokes Multi-Block (NSMB) code. The NSMB
solver is constructed on a finite volume formulation of the fully compressible Navier-
Stokes governing equations. In the present study, spatial discretization is ensured by
a second order central scheme and temporal intergration by a second order backward
scheme based on a dual time stepping method with constant CFL parameters. More
details about NSMB numerical issues can be found in [22] and validation results
concerning the C type meshgrid (256 × 81 nodes) used in the present configuration
are reported in [23].
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The isotropic OES version of the k − ε two-equation closure scheme is founded
on Chien’s low Reynolds number model [24] where eddy-diffusivity coefficient and
damping function were reconsidered to take into account of the turbulent kinetic
energy spectrum modification induced by the extraction of phase-avared quantities in
non-equilibrium turbulent configurations. In the present development, the scalar Cµ

parameter is replaced by the tensorial one and the following isotropic OES damping
function is considered, leading to a reduction of the eddy-viscosity closer to the wall
than using Chien’s function:

fµ

(

y+
)

= 1 − exp
(

−0.0002 y+ − 0.000065 y+2
)

,

where y+ is the non-dimensional wall distance.

4.2. Detached turbulent flow around a NACA0012 airfoil

The predictive capacities of the present anisotropic turbulence model are analysed on
a well-documented two-dimensional test-case, at first. The incompressible unsteady
flow past au NACA0012 airfoil at 20o degrees of incidence is simulated by means
of the present model. The Reynolds number based on the chord length and the
free-stream velocity is equal to 105. The numerical results are compared to an
experimental dataset [25]. As presented in Fig. 7, the CV i criteria transported by
the additional equations allow a local modulation of the eddy-diffusion coefficient,
leading to specific reductions in highly sheared region and in the near-wake coherent
structures. In the far-wake where a certain equilibrium is reached, a homogenisation
of the criterion is observed.

Cv1: 0.00 0.55 1.11 1.66 2.21 2.76 3.32

Figure 7. Iso-contours of the first misalignment criterion CV 1 and iso-lines of the vorticity
ωy = 0.25 (bold solid lines) and ωy = −0.25 (bold dashed lines), NACA0012 airfoil at 20o

degrees of incidence Re = 105 and M = 0.18 (NSMB simulation).

A comparison between the experimental and computed aerodynamic efforts em-
phasises the quality of the anisotropic turbulence model in this two-dimensionnal
context (Fig. 8). Numerical values are slightly higher than the experimental ones.
Relative errors are < 2.5% for the lift coefficient (Cz = 0.771/0.753) and < 2%
for the drag coefficient (Cx = 0.325/0.320), which demonstrates the capacity of the
present approach to predict with a high physical reliability this strongly detached
turbulent flow.
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Figure 8. (a) drag and (b) lift coefficients computed by means of the present anisotropic
model (solid curve), time-averaged simulation values (bold solid line) and experimental
results (dahsed line).

5. Conclusion

In the present study, the misalignment between the phase-averaged turbulent stresses
and the strain-rate tensor has been quantified in the regions of the coherent vortices
and in the highly sheared ones downstream of the separation. This physical inves-
tigation was performed on the basis of a phase-averaged 3C-PIV experiment which
allowed accessing detailed fields of turbulence quantities relevant to the flow physics.
A directional criterion was defined in order to monitor the anisotropy of the two
tensors in each space direction. This yielded an anisotropic tensorial eddy-viscosity
concept sensitised in respect of the non-equilibrium turbulence. A significant match
was achieved between the modelled turbulence stresses and the experimental ones
under the phase-averaged decomposition. Furthermore, in the perspective of numer-
ical implementations, advection equations were derived from the SSG second order
closure scheme [19] in order to transport the anisotropic misalignment criterion as
new state variables. The two-dimensional version of this tensorial first order model
was validated on a relevant test-case and the comparison of the simulated global
aerodynamic coefficients to experimental datas emphasises the promising predictive
capacity of this turbulence modeling approach.
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