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Interfacial Conditions in Seamless Multiscale Simulations
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Summary

Several aternatetime-dependent interfacial conditions, between the atomistic and con-
tinuum regions, are studied systematically for the seamless multiscale simulation, by de-
composing the displacement of atoms in continuum region into macro-average and ther-
mal fluctuation components. Multiple length scale, multiple time step, and meshless |ocal
Petrov-Galerkin (MLPG) method are used in the numerical examples.

Introduction

Systems with multiple length scales are ubiquitousin science. When the length-scale
in a system in question cannot be accessed by either the continuum methods because it
is too small for averaging, or by the atomistic methods because it is too large for simu-
lations on the present day computers, these two approaches become inadequate; and this
has stimulated the research in multiscale simulation to couple the atomistic and continuum
methods in a seamless way [1]. In the multiscale simulation, the atomistic method is em-
ployed where the displacement field varies on an atomic scale, and the continuum approach
is employed elsewhere. For the seamless multiscale simulation, it is important to ensure
that the elastic waves generated in the atomistic region can propagate into the continuum
region. The continuum region cannot support modes of short wavelength, which is less
than the spacing of the nodes. One source of finite size effects is the short waves which
are reflected back unphysically from an artificial interface or boundary, which may aso
produce uneven heating across the interface. In order to minimize such reflections, some
interfacial conditions are proposed [3][4][5]. In this paper, aternate interfacial conditions
between atomistic and continuum regions are proposed, and are studied systematically.
Their effectiveness in ensuring the accurate passage of information between atomistic and
continuum regions s discussed.

Interfacial Conditions

We consider a multiscale system, including an atomistic region A, which may contain
inhomogeneities, and an outer domain B, which is defect-free. In region B, the deformation
is homogeneous, and thus can be approximated by an equivalent continuum mechanics
model (ECM) as in [2], where the individual atomic displacements are not being solved
using molecular dynamics. The atomic environment is characterized by the deformation
gradient there. Similar to the quasicontinuum method proposed in [2], the constitutive
response in this region is obtained from the atomistic energy calculations. The material
in ECM is discritized into a set of nodes, which are not necessarily coincident with the
atoms. The positions of the atoms in this region can be interpolated from those of the
nodes. Effectively, the ECM model involves an averaging over the atomic degrees of the
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freedom that are missing from the node. In this paper, MLPG5 is used in the ECM region
B, with thelocal radial basis functions being used as the interpolats.

Assumethat there are N; atomsin region A (MD), and Nz inregion B (ECM). Thedis-
placement of atom o in Region A isdenoted asq,, (1 < a < Nj). Thedisplacement of atom
i in Region B isdenoted as uj (1 <i < Np), which is interpolated from the displacements
of the nodes in region B. The displacement u; of an atom in region B implies an average
value of the atomistic displacement, and can not catch the thermal fluctuations. To describe
it more accurately, we assume that the “real” displacement g; of the atom in the region B
can be expressed as. g; = U; + Au;, where Au; denote the atomistic thermal fluctuations,
and it is assumed that Au; << u; inregion B. Now, thetotal potential energy of the system
(A+B) can be written as:

Np
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Here Mo denotes the zeroth-order approximation of the potential energy; g aand ug are the
atomic displacement vectors with dimensions 3N, (for 3 dimensions) in region A, and 3N2
in region B, respectively; Aug is atomistic thermal fluctuation vector with dimension 3Ns>.
In many of the existing multiscale modeling methods, the thermal fluctuation is generally
neglected, asin [1]. In this case, in region A, the Newton’s Second law can be writtenin a
matrix form as

Maga=1%; = —0Mo/00a 2

where the atomic mass matrix M 4 is a diagonal matrix of size 3N, with the atomic masses
on the diagonal, and the force vector fg is of dimension 3N;. EQ. (2) is valid only for
classical 0°K. We denote the solution of eq. (2) as“ Solution Method 1. Thus, in Solution
Method 1, which is computationally inexpensive, has the potential drawback that higher
frequencies waves will reflect back from the interface between A and B. To improve the
performance at higher frequencies and assure that the energy in region A can pass through
the interface between A and B, the thermal fluctuation of atomsin region B must be con-
sidered. Thus, we will use the first-order approximation of the potential energy,

MaQa = f% — KagAug 3

where Kag = 62I'Io/6uBan. It is noted that the tangent stiffness matrix K ag is of order
3N1 x 3Ny, and its entries are nonzero, only whenthe atomsin region A are directly coupled
to atomsin region B. Aug can be obtained from the equation of motionin region B, viz.,

MpAiig = f3 — Mpiig (4)
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where the atomic mass matrix M g is a diagonal matrix of size 3N, and the force vector
f3 of dimension 3N, is approximated as f§ = —dMg/dug. In egs. (3) and (4), we note
that fa in Aisapproximated asfa = —dM /dga ~ —0Mo/00a — 02T /0ugdqa; that in Bis
approximated as fg = —an/an. By integrating eq. (4) twice, Aug can be solved for, and
substituting this solution into eq. (3), we have

Mata = 2 (5, 0a) Kz [ (€)Y (DT -R( ©)
where

Y (t) =Mg'fg (Ug,da) — Us (1) (6)

R (t) = Kag[Aug (0) +tAUg (0)] @)

Y(t) simply represents Alig. R (t) represents the effects on region A due to the initial
thermal fluctuation, and the velocity in region B and isusually treated as a vector of random
forces to describe the effects of statistical fluctuation in region B at nonzero temperature.
The solution of eq. (5), which is originally proposed here, is denoted as “ Solution Method
2". Itis noted that only afew of the entries in vector Y (t) are necessary, since the matrix
K ag isnonzero only for the atomic pairsin the cutoff of theinterface. That makes presently
proposed Solution Method 2 is computationally inexpensive.

In equations (3) and (4), which are based on the potential energy, we notethat theforce
intheregion A is expanded to the first order of Aug, whiletheforcein theregion B isonly
of the zeroth order. To increase the accuracy of the results, we can also expand the force
in the region B to thefirst order, asfg = fg + K ggAug, with the3N» x 3N, tangent stiffness
matrix K gg = 0%Mo/dugdus. Then, eq. (4) can be rewritten as

MpAlg = f(B)-f-KBBAUB— Mgls (8)

Similar to[7], by meansof Laplacetransforms, theintermediate-variable Au g can be solved
for, and substituting it back into eg. (3), we have

Matia=fA(Us,0a) — [ 9t~ Y (D4R (0 ©
where
9(t) =L {Kap [ +M'Kes] '} (10)
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R(t) =9 (t)Aug (0) + 9 (t) Aug (0) (11)

The matrix 9 (t) denotes the time-dependent memory kernel. The Operator L —* indicates
the inverse Laplace transform. Eq. (9) is similar to the Generalized Langevin Equation

(GLE) boundary condition derived in [7] for the single-scale problem, and in [5] for the

multiscale problem by using a “bridging scale” decomposition. We denote the solution of

eg. (8) as“ Solution Method 3”. The second term on the right hand side of equations (5) and

(9), the time history integral, implies the dissipation of energy from region A into region

B, which results in non-reflecting boundary conditions, supporting short wavel engths that

cannot be represented by the interpolationsin region B. It is noted that the computation of

the of the matrix 9 (t) involvesnot only an inverse Laplace transform, but also theinversion

of an Nz x Np matrix, which appears to be impractical, although only a few of the entries
in thisinverted matrix are necessary, since the matrix K ag is nonzero only for atomic pairs
in the cutoff of the interface. The necessary entries of the matrix § (t) can be approximated
asthat in [7], or computed numerically asin [3]. However, the computation of the matrix

9 (t) is costly. Here, we will not consider Solution Method 3. However, eq. (8) will play
important role in static case for seamless multiscale simulations, which will be discussed
in our future paper.

As ademonstration of the effectiveness of these interfacial conditions proposed here,
we consider the same example asin [1]: one-dimensional chains of identical atoms with
nearest-neighbor interactions. The spring constants, mass, and equilibrium distances are
set equal to unity. There are 151 atoms in region A, which is bracketed by two semi-
infinite chains (region B). The time integration uses multiple time steps: the equivalent
continuum simulation in region B is advanced by a time step At = 0.1, while the MD
simulation in region A is advanced by At / 5. The distance between the nodes in region
B is 7.8. The Solution Methods denoted as 1 and 2 earlier, are used to simulate the
time evolution, after introducing initial displacements according to the wave packet [1],
u(X,t = 0) = cos(kX) exp (—X2 /202) . Here, X denotesthe equilibrium position of atoms.
The center of region A is X = 0. A full MD simulation is also performed, in which the en-
tire system is treated in atomistic scale. As a measure of the effectiveness of Solution
Methods 1 and 2, the wave reflection at the interface between region A and B is evaluated.
Thereflectivity R is defined as the maximum difference between the instantaneous energies
stored in region A during the simulation and the full MD run, divided by initial energy in
region A [3].

Fig. 1 shows the variation of phonon reflectivity R versus the wave number k with
o = 5. In both cases shown, R approaches to zero in the long wave-length limit. As the
wave number increases, R increases greatly, and is over 0.8 at the boundary of Brillouin
zone in Solution Method 1, while it is less than 0.1 in al the Brillouin zone in Solution
Method 2. Solution Method 1 obtains lower R than that in [1], that means MLPG will
be a better method for a seamless multiscale simulation than the finite element method.
However, Solution Method 1 is much less effective than the Solution Method 2. Although
lower R can be reached in the Solution Method 3 [3], due to its high computational cost,
Solution Method 3 should not be an appropriate choice among the three solutions in most
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Figure 1. Comparison of the phonon reflectivity R in two solution methods.

problems.

Another example is the same problem asin [5]. A short wave-length perturbation is
multiplied to a Gaussian pulse. The resulting initial displacement is

exp (—X?/0?) — uc]
1-—uc

uX,t=0)= [ [14 0.1cos(kX)] (12)

Here, uc = exp(—12/02), | =50, 0 = 20, k = 0.41t. All the other parameters are same as
in the first example. Because of the configurational symmetry about X = 0, only the right
planeis plotted. Fig. 2 shows the displacements obtained by Solution Methods 1 and 2, and
full MD att = 18. Aninternal reflection of the short wave-length perturbation appears in
Solution Method 1, which lookslike the mirror image of the short wave-length perturbation
infull MD with the mirror located on the interface of region A and B (X = 75). In Solution
Method 2, the short wave-length waves almost pass out of region A at the sametime asthe
long wave-length Gaussian pul se propagatesinto region B. In region B, both cases smulate
the long wave-length Gaussian wave very well. Compared with the full MD solution, there
is an apparent smoothing of the wave profile as the Gaussian pul se propagatesin region B,
due to the large node space.

In summary, three aternate interfacial conditions are derived, for the multiscale smu-
lation, by considering the fluctuation of atoms in the continuum region. Solution Method
2, proposed in this paper, is found to be optimal in both reducing the reflection of phonons
and in lowering computational cost. The MLPG method is also found to be very effective
in seamless multiscale simulations.
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Figure 2. Comparison of the displacement profiles computed using the multiscale
methods and the full MD, at t=18.
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