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Summary

Several alternate time-dependent interfacial conditions, between the atomistic and con-
tinuum regions, are studied systematically for the seamless multiscale simulation, by de-
composing the displacement of atoms in continuum region into macro-average and ther-
mal fluctuation components. Multiple length scale, multiple time step, and meshless local
Petrov-Galerkin (MLPG) method are used in the numerical examples.

Introduction

Systems with multiple length scales are ubiquitous in science. When the length-scale
in a system in question cannot be accessed by either the continuum methods because it
is too small for averaging, or by the atomistic methods because it is too large for simu-
lations on the present day computers, these two approaches become inadequate; and this
has stimulated the research in multiscale simulation to couple the atomistic and continuum
methods in a seamless way [1]. In the multiscale simulation, the atomistic method is em-
ployed where the displacement field varies on an atomic scale, and the continuum approach
is employed elsewhere. For the seamless multiscale simulation, it is important to ensure
that the elastic waves generated in the atomistic region can propagate into the continuum
region. The continuum region cannot support modes of short wavelength, which is less
than the spacing of the nodes. One source of finite size effects is the short waves which
are reflected back unphysically from an artificial interface or boundary, which may also
produce uneven heating across the interface. In order to minimize such reflections, some
interfacial conditions are proposed [3][4][5]. In this paper, alternate interfacial conditions
between atomistic and continuum regions are proposed, and are studied systematically.
Their effectiveness in ensuring the accurate passage of information between atomistic and
continuum regions is discussed.

Interfacial Conditions

We consider a multiscale system, including an atomistic region A, which may contain
inhomogeneities, and an outer domain B, which is defect-free. In region B, the deformation
is homogeneous, and thus can be approximated by an equivalent continuum mechanics
model (ECM) as in [2], where the individual atomic displacements are not being solved
using molecular dynamics. The atomic environment is characterized by the deformation
gradient there. Similar to the quasicontinuum method proposed in [2], the constitutive
response in this region is obtained from the atomistic energy calculations. The material
in ECM is discritized into a set of nodes, which are not necessarily coincident with the
atoms. The positions of the atoms in this region can be interpolated from those of the
nodes. Effectively, the ECM model involves an averaging over the atomic degrees of the
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freedom that are missing from the node. In this paper, MLPG5 is used in the ECM region
B, with the local radial basis functions being used as the interpolats.

Assume that there are N1 atoms in region A (MD), and N2 in region B (ECM). The dis-
placement of atom α in Region A is denoted as qα (1≤ α ≤ N1). The displacement of atom
i in Region B is denoted as ui (1 ≤ i ≤ N2), which is interpolated from the displacements
of the nodes in region B. The displacement u i of an atom in region B implies an average
value of the atomistic displacement, and can not catch the thermal fluctuations. To describe
it more accurately, we assume that the “real” displacement q i of the atom in the region B
can be expressed as: qi = ui + ∆ui, where ∆ui denote the atomistic thermal fluctuations,
and it is assumed that ∆ui << ui in region B. Now, the total potential energy of the system
(A+B) can be written as:

Π (q1, · · · ,qN1+N2) ≈ Π (ui;qα)+
N2

∑
i=1

∂Π
∂qi

∣∣∣
qi=ui

∆ui

= Π0 +
N2

∑
i=1

∂Π0
∂ui

∆ui = Π0 (uB;qA)+ ∂Π0
∂uB

·∆uB

(1)

Here Π0 denotes the zeroth-order approximation of the potential energy; q Aand uB are the
atomic displacement vectors with dimensions 3N1 (for 3 dimensions) in region A, and 3N2

in region B, respectively; ∆uB is atomistic thermal fluctuation vector with dimension 3N2.
In many of the existing multiscale modeling methods, the thermal fluctuation is generally
neglected, as in [1]. In this case, in region A, the Newton’s Second law can be written in a
matrix form as

MAq̈A = f0
A; f0

A = −∂Π0
/

∂qA (2)

where the atomic mass matrix M A is a diagonal matrix of size 3N1 with the atomic masses
on the diagonal, and the force vector f 0

A is of dimension 3N1. Eq. (2) is valid only for
classical 0◦K. We denote the solution of eq. (2) as “Solution Method 1”. Thus, in Solution
Method 1, which is computationally inexpensive, has the potential drawback that higher
frequencies waves will reflect back from the interface between A and B. To improve the
performance at higher frequencies and assure that the energy in region A can pass through
the interface between A and B, the thermal fluctuation of atoms in region B must be con-
sidered. Thus, we will use the first-order approximation of the potential energy,

MAq̈A = f0
A −K AB∆uB (3)

where K AB = ∂2Π0
/

∂uB∂qA. It is noted that the tangent stiffness matrix K AB is of order
3N1×3N2, and its entries are nonzero, only when the atoms in region A are directly coupled
to atoms in region B. ∆uB can be obtained from the equation of motion in region B, viz.,

MB∆üB = f0
B −MBüB (4)
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where the atomic mass matrix M B is a diagonal matrix of size 3N2, and the force vector
f0
B of dimension 3N2 is approximated as f0

B = −∂Π0
/

∂uB. In eqs. (3) and (4), we note
that fA in A is approximated as fA =−∂Π

/
∂qA ≈−∂Π0

/
∂qA −∂2Π0

/
∂uB∂qA; that in B is

approximated as fB = −∂Π
/

∂qB. By integrating eq. (4) twice, ∆uB can be solved for, and
substituting this solution into eq. (3), we have

MAq̈A = f0
A (uB,qA)−K AB

∫ t

0
(t − τ)Y (τ)dτ−R(t) (5)

where

Y (t) = M−1
B f0

B (uB,qA)− üB (t) (6)

R(t) = KAB [∆uB (0)+ t∆u̇B (0)] (7)

Y(t) simply represents ∆üB. R(t) represents the effects on region A due to the initial
thermal fluctuation, and the velocity in region B and is usually treated as a vector of random
forces to describe the effects of statistical fluctuation in region B at nonzero temperature.
The solution of eq. (5), which is originally proposed here, is denoted as “Solution Method
2”. It is noted that only a few of the entries in vector Y(t) are necessary, since the matrix
K AB is nonzero only for the atomic pairs in the cutoff of the interface. That makes presently
proposed Solution Method 2 is computationally inexpensive.

In equations (3) and (4), which are based on the potential energy, we note that the force
in the region A is expanded to the first order of ∆uB, while the force in the region B is only
of the zeroth order. To increase the accuracy of the results, we can also expand the force
in the region B to the first order, as f B = f0

B +K BB∆uB, with the3N2 ×3N2 tangent stiffness
matrix K BB = ∂2Π0

/
∂uB∂uB. Then, eq. (4) can be rewritten as

MB∆üB = f0
B +K BB∆uB −MBüB (8)

Similar to [7], by means of Laplace transforms, the intermediate-variable ∆u B can be solved
for, and substituting it back into eq. (3), we have

MAq̈A = f0
A (uB,qA)−

∫ t

0
ϑ (t − τ)Y (τ)dτ +R(t) (9)

where

ϑ (t) = L−1
{

K AB
[
s2I +M−1

B K BB
]−1

}
(10)
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R(t) = ϑ̇ (t)∆uB (0)+ϑ (t)∆u̇B (0) (11)

The matrix ϑ (t) denotes the time-dependent memory kernel. The Operator L −1 indicates
the inverse Laplace transform. Eq. (9) is similar to the Generalized Langevin Equation
(GLE) boundary condition derived in [7] for the single-scale problem, and in [5] for the
multiscale problem by using a “bridging scale” decomposition. We denote the solution of
eq. (8) as “Solution Method 3”. The second term on the right hand side of equations (5) and
(9), the time history integral, implies the dissipation of energy from region A into region
B, which results in non-reflecting boundary conditions, supporting short wavelengths that
cannot be represented by the interpolations in region B. It is noted that the computation of
the of the matrix ϑ (t) involves not only an inverse Laplace transform, but also the inversion
of an N2 ×N2 matrix, which appears to be impractical, although only a few of the entries
in this inverted matrix are necessary, since the matrix K AB is nonzero only for atomic pairs
in the cutoff of the interface. The necessary entries of the matrix ϑ (t) can be approximated
as that in [7], or computed numerically as in [3]. However, the computation of the matrix
ϑ (t) is costly. Here, we will not consider Solution Method 3. However, eq. (8) will play
important role in static case for seamless multiscale simulations, which will be discussed
in our future paper.

As a demonstration of the effectiveness of these interfacial conditions proposed here,
we consider the same example as in [1]: one-dimensional chains of identical atoms with
nearest-neighbor interactions. The spring constants, mass, and equilibrium distances are
set equal to unity. There are 151 atoms in region A, which is bracketed by two semi-
infinite chains (region B). The time integration uses multiple time steps: the equivalent
continuum simulation in region B is advanced by a time step ∆t = 0.1, while the MD
simulation in region A is advanced by ∆t

/
5. The distance between the nodes in region

B is 7.8. The Solution Methods denoted as 1 and 2 earlier, are used to simulate the
time evolution, after introducing initial displacements according to the wave packet [1],
u(X ,t = 0) = cos(kX)exp

(−X2

/
2σ2

)
. Here, X denotes the equilibrium position of atoms.

The center of region A is X = 0. A full MD simulation is also performed, in which the en-
tire system is treated in atomistic scale. As a measure of the effectiveness of Solution
Methods 1 and 2, the wave reflection at the interface between region A and B is evaluated.
The reflectivity R is defined as the maximum difference between the instantaneous energies
stored in region A during the simulation and the full MD run, divided by initial energy in
region A [3].

Fig. 1 shows the variation of phonon reflectivity R versus the wave number k with
σ = 5. In both cases shown, R approaches to zero in the long wave-length limit. As the
wave number increases, R increases greatly, and is over 0.8 at the boundary of Brillouin
zone in Solution Method 1, while it is less than 0.1 in all the Brillouin zone in Solution
Method 2. Solution Method 1 obtains lower R than that in [1], that means MLPG will
be a better method for a seamless multiscale simulation than the finite element method.
However, Solution Method 1 is much less effective than the Solution Method 2. Although
lower R can be reached in the Solution Method 3 [3], due to its high computational cost,
Solution Method 3 should not be an appropriate choice among the three solutions in most
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Figure 1: Comparison of the phonon reflectivity R in two solution methods.

problems.

Another example is the same problem as in [5]. A short wave-length perturbation is
multiplied to a Gaussian pulse. The resulting initial displacement is

u(X ,t = 0) =

[
exp

(−X2
/

σ2
)−uc

]
1−uc

[1+ 0.1cos(kX)] (12)

Here, uc = exp
(−l2/σ2

)
, l = 50, σ = 20, k = 0.4π. All the other parameters are same as

in the first example. Because of the configurational symmetry about X = 0, only the right
plane is plotted. Fig. 2 shows the displacements obtained by Solution Methods 1 and 2, and
full MD att = 18. An internal reflection of the short wave-length perturbation appears in
Solution Method 1, which looks like the mirror image of the short wave-length perturbation
in full MD with the mirror located on the interface of region A and B (X = 75). In Solution
Method 2, the short wave-length waves almost pass out of region A at the same time as the
long wave-length Gaussian pulse propagates into region B. In region B, both cases simulate
the long wave-length Gaussian wave very well. Compared with the full MD solution, there
is an apparent smoothing of the wave profile as the Gaussian pulse propagates in region B,
due to the large node space.

In summary, three alternate interfacial conditions are derived, for the multiscale simu-
lation, by considering the fluctuation of atoms in the continuum region. Solution Method
2, proposed in this paper, is found to be optimal in both reducing the reflection of phonons
and in lowering computational cost. The MLPG method is also found to be very effective
in seamless multiscale simulations.
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Figure 2: Comparison of the displacement profiles computed using the multiscale
methods and the full MD, at t=18.
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