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Summary 

Since the inelastic strain or the inherent strain is produced only in the vicinity of the 
weld line, the welding distortion of large structure can be predicted by elastic FEM with 
introducing such inherent strain as the initial strain. In this report the general idea of the 
inherent strain or the eigen strain is discussed first. Then the prediction of welding 
distortion of curved structure is presented as an example. Further, a simple method using 
inverse analysis to determine the welding inherent deformation is proposed. 

Introduction 

Welding is a key technology for building metal structures such as ships, bridges and 
automobiles. However, it is impossible to avoid the welding distortion due to intrinsic 
nature of non-uniform heating and cooling of the welded area. Welding distortions 
degrades the performance of the product. Also, it is an obstacle for realizing automation 
and robotization in assembly process. In order to solve these problems, quantitative 
prediction and control of the welding deformations is necessary.  

Since the phenomena involved in the welding is transient and nonlinear, thermal-
elastic-plastic FEM must be employed. However, it requires unrealistically long 
computation time even for small test models. Alternative method is to employ the 
concept of eigen strain[1] or inherent strain. The idea of this method is that the welding 
distortion and the residual stress of a structure is produced by the inherent strain existing 
in the vicinity of the welding line. The local deformation due to the welding, such as the 
transverse shrinkage, the longitudinal shrinkage, the angular distortion (or the transverse 
bending) and the longitudinal bending can be 
regarded as the inherent deformations which 
are the integration of the inherent strains. It is 
known that the distribution of the inherent 
deformation is almost constant along the 
welding line and its value can be related to the 
heat input parameter Q/h2 [2] as shown in Fig. 
1. Thus, if the inherent deformations are 
known, the welding distortion of large 
structures can be predicted by elastic FEM 
with introducing the inherent deformations as 
the initial strains distributing in the elements 
along the welding line. 

Fig. 1 Relation between angular distortion 
          and heat input parameter Q/h2. 
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There are two alternative ways to estimate the inherent deformations. One is the 
experiment and the other is the thermal-elastic-plastic FEM. Though it requires time and 
cost, the experiment is simple when the weld length is long such as in the case of ships 
and bridges. When the weld length is long enough, the self-restraint is small and the 
inherent deformation can be directly measured. The latter is effective if all necessary 
information such as the temperature dependent material properties and the heat input 
distribution is known. In case of the assembly of automobile, short weld is often used. 
When the weld is short, the self-restraint is large and the inherent deformation terns into 
both the deformation and the residual stress which is invisible. Thus, the measurement 
becomes difficult.  

In this report, the general idea of the inherent strain in welding is discussed and the 
prediction of the welding distortion of a curved structure is presented as an example. In 
this example, the influence of gap, which is also the inherent deformation in the general 
sense, is examined. Further, a simple inverse analysis to estimate the inherent 
deformation for short weld is proposed. 

Inherent Deformation 

To explain the fundamental concepts involved in problems associated with the 
welding residual stress and distortion, a simple model consists of three metal bars shown 
in Fig. 2 is often used. Three bars, namely (a), (b) and (c), are joined at both ends. One 
end of the three bars is fixed and the other end is free. The bar-(b) is assumed to be 
heated over the melting point partially or throughout its length. When the bar-(b) is 
cooled down to the room temperature after the thermal cycle, the length of the bar-(b) 
becomes shorter than the original length L by ∆L. In this case the deformation of the free 
end u and the tensile force Fb acting in the 
bar-(b) can be described in terms of ∆L, i.e. 

u = ∆L k/(k+k*)= (1-β) ∆L  (1) 

Fb = L k k*/(k+k*)= βkL    (2) 

where, k is the stiffness of the bar-(b) and 
k* is the sum of the stiffnesses of bar-(a) 
and (c). β=k*/(k+k*) is the restraining 
parameter which represents the restraint 
acting on the bar-(b). Since both the 
deformation and the stress are determined 
by the shrinkage ∆L, ∆L is called inherent 
deformation in this case.  

Fb 

(b) final state (a) initial state
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(c)
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(a) (c) (b) (a) 

thermal cycle

(c) separated state If the restraint is small such as the case 
in which k*=0 or β=0, the deformation u 
and the tensile force Fb become, 

Fig. 2 Three bar models for welding 
          deformation and residual stress. 
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u = ∆L   (3)  Fb = 0    (4) 

This means that the mismatch or the inherent deformation ∆L directly appears in the form 
of deformation. 

To the contrary, if the restraint is extremely large (k* = ∞ or β=1), the mismatch ∆L 
directly appears in force Fb not in deformation u, i.e. 

u = 0   (5)  Fb = k ∆L    (6) 
 

Inherent Strain 

The transient or the residual deformation in welding is produced by various strain 
components of different origins. In general, apparent strain ε, which corresponds to the 
deformation, is regarded as the sum of the thermal strain εT, elastic strain εe, plastic strain 
εp, strain due to the phase transformation εt and the creep strain εcr, i.e. 

ε = εT + εe + εp + εt + εcr       (7) 

The thermal strain becomes zero when the temperature returns to the original 
temperature after the complete thermal cycle. Thus, if we are interested in the state after 
the complete thermal cycle Eq. (7) becomes. 

ε = εe + εp + εt + εcr        (8) 

The strain components in the above equation can be separated into the elastic strain εe 
and other strain components ε*. The elastic strain is produced by stress and reversible. On 
the other hand, all components of ε*, namely plastic strain, creep strain and that produced 
by phase transformation, are irreversible. Because of this nature, it is called as inherent 
strain or eigen strain.  

The same three bar model can be used for more general discussion. Let’s assume that 
the apparent strain in the three bars can be decomposed into the elastic strains εe

a , εe
b , εe

c 
and the inherent strains  ε*

a , ε*
b ,  ε*

c . Then the equations governing the mechanical 
behavior of the model are given as follows. 

(a) strain-displacement relation (3 equations) 

u/L = ε*
a + εe

a   (9) u/L = ε*
b + εe

b   (10) 

u/L = ε*
c + εe

c   (11) 

(b) stress-strain relation (3 equations) 

σa = E εe
a = E(u/L - ε*

a)  (12) σb = E εe
b = E(u/L - ε*

b)  (13) 

σc = E εe
c = E(u/L - ε*

c)  (14) 
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(c) equilibrium equation (1 equation) 

A(σa+σb+σc)=0        (15) 

where,  L: length of bars A: cross-sectional area of bars 
  E: Young’s modulus u: displacement        
  σa , σb , σc : stresses of bars 

In this problem, 10 variables, namely u, εe
a, εe

b, εe
c, ε*

a, ε*
b, ε*

c, σa, σb and σc , are 
involved. Among them, εe

a, εe
b, εe

c and u can be measured. On the other hand, we have 
3+3+1=7 equations relating these variables. This means that 6 variables must be 
determined by 7 equations. 

When we are interested in welding residual stress, we can measure elastic strain by 
various methods such as the strain gage or the X-ray diffraction. But the welding 
deformation can not be measured because the initial configuration before welding is not 
available in the real structures. Therefore, let’s assume that the elastic strains εe

a , εe
b and 

εe
c are measurable and known. By eliminating displacement u and stresses σa , σb and σc 

from Eqs. (9)-(15), the following equations are derived. 
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It can be readily shown that the determinant of the coefficient matrix is zero. This means 
that the inherent strains ε*

a , ε*
b and ε*

c can not be uniquely determined. Undetermined 
part of the strain corresponds to the solution of the following homogeneous equation. 
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The solution of the above equation is given as, 
ε*

a = ε*
b = ε*

c = λ = u/L       (18) 
where, λ is an arbitrary constant. Physically this implies that the inherent strain satisfying 
the compatibility produces deformation but no stress. This argument is important in 
measuring residual stress based on the inherent strain[3].  

To exclude the compatible mode of inherent strain, one component, for example ε*
c , 

is assumed to be zero, thus, 
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The solution for this equation is shown to be, 
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The inherent strain estimated following the above procedure is called effective inherent 
strain which means that it reproduces the residual stress exactly but not the deformation. 

Similarly, if the displacement u is measured and known, the following relation is 
derived from the equilibrium equation by eliminating the elastic strains and the stresses. 

u/L = (ε*
a + ε*

b + ε*
c)/3       (21) 

This relation tells us that the inherent strains, which satisfy the following relation, 
produce stress but no deformation. 

ε*
a + ε*

b + ε*
c = 0        (22) 

In other words, the inherent strain field, which corresponds to the equilibrated stress field, 
produces stress but no deformation. This is important in the engineering problems such as 
plate forming.  

Welding Distortion of Curved Structure 

The distortions during the assembly by welding are very difficult to predict based on 
experience, especially, when the structures have asymmetric curved geometry such as 
ships and automobiles. I such cases, both the local shrinkage and the correction of gap 
and misalignment between parts are influential. We proposed an elastic FEM which takes 
into account these through the concept of inherent deformation and the interface element. 
Figure 3 shows the influence of the gap correction before welding on the final 
distortion[4]. When the structure is asymmetric, significant distortion of twisting mode is 
produced by welding. The size and the mode of the gap are also influential to the 
distortion as shown in Fig.3. 

Estimation of Inherent Deformation Using Inverse Analysis 

When the weld is partial and its length is short, the inherent deformation can not be 
measured directly. To solve this problem, nonlinear inverse analysis using FEM is 
proposed[5]. In this method, three-dimensional coordinates at a small number of the 

Fig. 3 Influence of gap correction on welding distortion of curved structure. 

Gap

(b) end gap (a) center gap

Gap

1136
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



selected points on the specimen are measured before and after welding. From these 
coordinates, the deformations Fm

j , such as the shrinkages between two points and the 
deflection relative to the reference triangle defined in the specimen are computed. In this 
way, the effect of the rigid body deformation can be removed. On the other hand, if the 
distribution of the inherent deformation is described using parameters ai, the relation 
between the parameter ai and the deformation Fj(ai) can be computed using elastic shell 
FEM. When the plate is thin, the functions Fj(ai) are nonlinear. The parameters of 
inherent deformation ai which produce the measured deformations Fm

j are determined 
through iterative inverse analysis which is based on the following equation. 

j
m

iijijiij Fa)a/F()a(F)aa(F =∂∂+≈+ ∆∆      (23) 

Conclusions 

(1) Compatible inherent strain field produces deformation but no stress. 

(2) Inherent strain field corresponding to self-equilibrated stress field produces stress but 
no deformation. 

(3) Both the local shrinkage due to welding and the gap existing before the welding are 
the inherent strain in general sense and they produce distortion. 

(4) To estimate the inherent deformation of the short weld, iterative inverse analysis is 
proposed. 
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