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Summary

In this paper we introduce a finite–element technique based upon a three–dimensional Hermite in-
terpolation for application to structural dynamics, within an optimal design context. The unknowns are
the nodal values of the displacement, of its three partial derivatives, of its three mixed second deriva-
tives, and of its third mixed derivative. The main advantage of such an element is the possibility of an
efficient utilization of a quasi–static reduction (i.e., Guyan technique), which allows one to eliminate all
the degrees of freedom associated with the derivatives of the displacement field (with a reduction by a
factor of 8–to–1), while maintaining a high level of accuracy. Applications include the evaluation of the
natural frequencies of shell–like elastic structures, which are treated as three–dimensional objects, with
only one element along the normal (comparisons with commercial–code results are included). Finally,
if the nodal values of the displacement field on the two sides of the shell are expressed in terms of their
semi–sum (representative of the mid–surface displacement) and their semi–difference (representative of
rotation and stretching on the normal), an additional advantage is obtained by using a second Guyan
reduction to eliminate the semi–differences.

Introduction

Multi–Disciplinary Optimization (MDO) denotes a methodology whereby several computer mod-
ules, each related to one of the basic disciplines may be interfaced under the umbrella of an optimizer,
to yield a computer–automated optimal design of an aircraft configuration. The disciplines involved in-
clude structures, aerodynamics, aeroelasticity (e.g., divergence, flutter and gust response), performance,
flight dynamics, propulsion, feedback control, and aeroacoustics; the objective may be cast in terms of
economic considerations (e.g., life–cycle costs). This approach is particularly useful for innovative con-
figurations, for which the designer cannot rely upon past experience (see Ref. [1] for a deeper analysis
of this point).

In this paper we address a finite–element methodology for a structural MDO module. To this aim,
it is useful to have an element with three major features:(i) it is highly desirable that the element be
very flexible, so as be able to model efficiently all types of geometries (e.g., plates, shells and three–
dimensional elements), thereby facilitating for instance the connection of the various components (or the
transition, during optimization, from one type of structure to another,e.g., from thin plate to thick shell);
(ii) it is paramount that the above feature be combined with user–friendliness, specifically, it should not
require complicated topologies (requiring human intervention), thereby rendering feasible automated–
resizing programming;(iii) last, but not least, the element should be highly accurate, so as to give good
results with few elements (an important feature when repeated calculations occur, as in MDO).

The proposed element is based upon a three–dimensional Hermite interpolation, and will be referred
to as the Hermite element (see Ref. [2]). The unknowns are the nodal values of the three–dimensional
displacement vectors, their three partial derivatives, their three mixed second derivatives, and their third
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mixed derivative. The element satisfies the three requirements above. Specifically, in reference to Re-
quirement(i), plate/shell elements are treated as three–dimensional elements with a single element along
the thickness. For Requirement(ii) , the topology utilized is very simple (collection of topologically
hexahedral blocks, with hexahedral elements having unknowns only at the vertices; the connection at
the boundary is accomplished in a very efficient manner described later). Regarding Requirement(iii) ,
it should be noted that in MDO the structural aspect that is most computer intensive is that pertaining
structural dynamics (statics is an order of magnitude simpler); in view of this, methodologies that can
take full advantage of quasi–static reductions (e.g., Guyan’s method [3]) are extremely efficient in op-
timal design applications. This structural–dynamics advantage is definitely the “forte” of the proposed
element and stems from the fact that Guyan’s quasi–static techniques may be efficiently employed within
the proposed methodology, since all the derivatives may be treated as slave degrees of freedom, as they
are connected to high–frequency modes, with a reduction of the number of unknowns by a factor 8–to–
1. An additional quasi–static reduction is possible in the case of shells, which as mentioned above are
treated like three–dimensional geometries with only one element along the normal; in this case, the nodal
values of the displacement field on the two sides of the shell are expressed in terms of their semi–sum
(representative of the mid–surface displacement) and their semi–difference (representative of rotation
and stretching on the normal), and a second Guyan reduction is used to eliminate the semi–differences.
Finally, the proposed element is not subject to the “interpolation failure” and “locking” phenomena – an
indispensable requirement (see,e.g., Refs. [4] and [5]; for typically used remedies, see,e.g., Ref. [6]).

Hermite three–dimensional finite element

In three–dimensional analysis brick elements with linear shape functions and eight nodes are com-
monly employed. Serendipity high–order finite elements are also commonly used. Specifically, the
twenty–node brick element has quadratic displacement shape–functions and the thirty–two–node brick
element has cubic shape functions. Here, we present a feasibility study of an element based upon the
third–order Hermite interpolation. This element is known as the Hermite element (see, for instance, Ref.
[2], where it is also referred to as Bogner–Fox–Schmit element). This element is rarely used because of
problems that arise if the domain is not topologically hexahedral. The main innovation introduced here
deals with this issue and is addressed later (see Section entitled “Formulation for complex structures –
a novel scheme”). First, let us discuss the element for the simple case of a topologically hexahedral
domain. In particular, we want to present the advantages of the element in connection with the Guyan re-
duction, an aspect not sufficiently emphasized before. As mentioned above, this is crucial in the present
context, of multi–disciplinary optimization (see also, Ref. [1]).

For the one–dimensional case, the Hermite interpolation, of classC 1, is given by (in[−1,1])

u(x) = u1M1(x)+u2M2(x)+v1N1(x)+v2N2(x), (1)

whereu1,2 denotes the values ofu(x) in x = ±1, andv1,2 denotes the values of thex–derivative ofu(x),
v(x) = du/dx, in x =±1, whereas the Hermite interpolation polynomialsMk(x) andNk(x) are given by

M1,2(x) =
1
4
(2∓3x±x3); N1,2(x) =

1
4
(±1−x∓x2 +x3). (2)

In order to extend the concept to the three–dimensional case, introduce material curvilinear coordinates
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ξα and consider abrick element, which by definition corresponds to a cube in theξα–space. Using the
Hermite interpolation in all three directions yields an approximation for the displacement given by

u(ξα) = ∑
s

Ps(ξα)us+∑
s

3

∑
β=1

Qβ
s(ξα)us,β +∑

s
∑

β,γ∈Iβγ

Rβγ
s (ξα)us,βγ +∑

s
S123

s (ξα)us,123, (3)

where “,α” denotes the partial derivative with respect toξα (for instanceu,αβ = ∂2u/∂ξα∂ξβ).3 In ad-
dition, s := (s1,s2,s3), with sk = 1,2, defines the eight nodes of the brick element. Moreover, noting
that the second–derivative summation spans only mixed derivatives, we have thatIβγ := (1,2;2,3;3,1),
whereas the term 123 is the only mixed third–order derivative. Finally,Ps(ξα), Qβ

s(ξα), Rβγ
s (ξα), and

S123
s (ξα) are suitable products of the Hermite polynomials in Eq. 2. For instance,

Ps(ξα) = Ms1(ξ
1)Ms2(ξ

2)Ms3(ξ
3),

Q1
s(ξ

α) = Ns1(ξ
1)Ms2(ξ

2)Ms3(ξ
3),

R12
s (ξα) = Ns1(ξ

1)Ns2(ξ
2)Ms3(ξ

3),
S123

s (ξα) = Ns1(ξ
1)Ns2(ξ

2)Ns3(ξ
3). (4)

The expressions above yield the local interpolation procedure. The above expressions may be combined
to yield a global interpolation function asu(ξα) = ∑p Ψp(ξα)zp, wherezp are the unknown nodal values,

whereasΨp(ξα) comprisesu(n), u(n)
,α , u(n)

,αβ, andu(n)
,123 (n = 1, ...,N).4

The problem under consideration (evaluation of the natural modes of vibration for an isotropic elastic
material) may be stated as

1
2

ω2
∫

V
ρ‖u‖2dV − 1

2

∫
V

σαβεαβdV = extr[u(ξα)], (5)

whereσβ
α = 2G[εβ

α + εγ
γδ

β
αν/(1−2ν)] andεαβ = (uα/β +uβ/α)/2, with .../α denoting covariant differen-

tiation.5 Substituting the approximation foru discussed in the preceding section, locally expressed by
Eq. 3, yields1

2ω2zTMz− 1
2zTKz = extr(z), where the vector of the unknown nodal values is given by

z = {zn}, whereas the mass and stiffness matrices are respectively given byM = [mmn] andK = [kmn],
with

mmn =
∫

V
ρΨm(ξα) ·Ψn(ξα)dV kmn = ∑

α,γ

∫
V

2G

(
Pγ

αPα
γ +

ν
1−2ν

Pα
α Pγ

γ

)
dV , (6)

wherePγ
α(ξρ) = ∑β

[
Ψm,α ·gβ +Ψn,β ·gα

]
gβγ (gβγ being the contravariant metric tensor components).

3Throughout the paper, Greek subscripts/superscripts are used to denote curvilinear coordinates (covariant/contravariant
components, or partial derivatives). Latin letters denote Cartesian coordinates.

4The boundary conditions considered here are either those for a free–surface boundary, which require no action (natural
boundary condition), or those for a clamped–surface boundary, for which the values of the nodal displacements – and their
tangential derivatives – vanish.

5The most general linear stress–strain relationship is given byσαβ = cαβγδεγδ. For the sake of simplicity, this general
expression is not included in this paper, since all the numerical results are limited to isotropic homogeneous material.
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Validation of formulation

The above formulation is limited to topologically hexahedral structures with no discontinuities on
the base vectorsgα. The extension to more general geometries is examined in the next section. In
this section, we present a validation of the above formulation. Only a few test cases are presented,
limited to shell–like structures, since the validation for this type of structures is critical to our claims
(Requisites 1 and 3). For simplicity, for all the test cases,ρ, E andν are constant. Thus,̂ω = ω`

√
ρ/E

is independent ofρ, E and` (where` is a reference length). Our results are obtained with and without
Guyan’s reduction.6 These results are compared with those obtained using an existing commercial code,
ANSYS [7]. Specifically, we made the comparison with the ANSYS (two–dimensional) shell element
(denoted here byANSYS 2D), which is commonly used to analyze plates and shells. We also used the
three–dimensional element with 20 nodes (here denoted byANSYS 3D 20n), because is the most closely
related to our element. To have a meaningful comparison, a consistent–mass matrix is used for all the
results.

Consider first thin square plates. Let` coincide with the plate edge length andτ denotes the thick-
ness. Assumeτ/` = 0.01. The convergence analysis for the first dimensionless natural frequency,
ω̂1 = ω1`

√
ρ/E, of a thin square plate, free at the edges, is shown in Figs. 1 and 2. The plate is

discretized withN elements along each in–plane direction and 1 element in the normal direction. Figure
1 presents the value ofω1 as a function of 1/N, with and without Guyan reduction. It is apparent that
the Guyan reduction may be introduced with minimal penalty on accuracy, especially for finer mesh
sizes. Next, we compare the results that we obtained using Guyan’s reduction with those obtained using
ANSYS [7]. This is shown in Figure 2, which presentsω̂1 as a function of 1/DOF, whereDOF denotes
the degrees of freedom.7 The horizontal line is the frequency of the thin plate equation (eigenvalue of
bi–Laplacian), obtained with the Galerkin method (with base functions given by the product of free–free
beam eigenfunctions). It is apparent that our results have a higher rate of convergence, even though
the ANSYS element is specifically designed for shells (theANSYS 3D 20nresults are not included be-
cause their convergence is too slow). Similar considerations hold for Figs. 3 and 4, where the results
for a clamped plate are presented. In this case, the advantage of using Guyan’s reduction is even more
evident: note that the comparison is made with equal number of elements and the loss in accuracy is
insignificant. The advantage of the 8–to–1 reduction inDOF (not taken into account in Fig. 3) is used in
Fig. 4, where the comparison with the ANSYS results is again startling (here, we show also the results
for the ANSYS three–dimensional 20−node element).

Next, consider a spherical shell with radiusR= 5, the length alongx andy direction is 1 and the
thickness is 1/100 of this length. In this case the comparison is made just between our results with
Guyan and the ANSYS two–dimensional shell. The results are presented in Figs. 5 and 6, which depict
the first dimensionless frequency as a function of 1/N and 1/DOF, respectively (still withN = N1 = N2,
and with one element along the thickness). Similar considerations apply for this case as well.

Finally, as mentioned above, in the case of shell–like structures, it is possible to reduce the number
of unknowns even further, by using a Guyan reduction a second time. Indeed, instead of the upper–

6In the Guyan reduction, we eliminate all the derivatives, with a reduction factor of 8–to–1. Indeed, for each value of the
function, there are 7 derivatives: 3 derivatives of the first order, 3 mixed derivatives of the second order, and 1 mixed derivative
of the third order.

7We used 1/DOF because the computer time for the eigen–solution is a function ofDOF, and not ofN; this is the key
advantage of using Guyan’s reduction.
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and lower–side nodal displacements (uU anduL respectively), one may use their semi–sum and semi–
difference,uM = (uU +uL)/2 andu∆ = (uU −uL)/2. Sinceu∆/τ is related to thickness variations (normal
components) and rotations around the mid–surface (in–plane components), theu∆ variables correspond
to high–frequency motions and therefore the Guyan reduction may be applied again.8 The corresponding
convergence analysis for a free thin plate is presented in Figures 7 and 8, which depict the first dimen-
sionless frequency as a function of 1/N and 1/DOF, respectively (again withN = N1 = N2, and with
one element along the thickness).

Formulation for complex structures – a novel scheme

As mentioned above, the formulation discussed in the preceding sections (hereby referred to as the
Scheme A) presents no problems as long as the structure is topologically hexahedral (i.e., a rectangular
parallelepiped in theξα–space); for, in this case all the partial derivatives assume the same value for
all the eight bricks that share a node. Major problems arise for more complex structures, even for
structures that may be obtained as combinations of topologically hexahedral substructures, which is
the only case considered here. We will refer to these substructures asblocks(each block is divided
into N1×N2×N3 bricks). Specifically, problems arise when the coordinate lines of two adjacent blocks
present a discontinuity (specifically, when the covariant base vectors,gα = ∂x/∂ξα, are not continuous).
In this case, the partial derivatives of any functionf with respect toξα are discontinuous (recall∂ f/∂ξα =
gα ·gradf ). As far as the first–order derivatives are concerned, if the gradient is continuous the problem
is removed by assuming as unknowns the values of the Cartesian coordinates of gradu, uk,h = ∂uk/∂xh);
these quantities are continuous under the present assumption of continuity forE and ν. The partial
derivatives may then be obtained as∂ f/∂ξα = gα ·gradf . The problem, however, remains for the second–
order derivatives, because, in order to express them in terms of Cartesian components, one needs all
the second–order derivatives, not only the mixed ones. Similar considerations hold for the third–order
derivatives. In order to address these issues, several approaches have been explored and presented in Ref.
[8]. The first approach tried in Ref. [8] consists of expressing the second– and third–order derivatives, via
suitable finite differences, in terms of the function at the nodes (akin to the approach used by Gennaretti
et al. [9] in a related boundary–element method for aerodynamics). The results for a topologically
hexahedral structure (unconstrained plate with thickness ratio of 1/100), are much worse that those
obtained with Scheme A discussed above, and even worse than those obtained with the NASTRAN
CHEXA element (Ref. [6]). In another approach used in Ref. [8], the second and third order derivatives
were set equal to zero. The results were even worse. Then, still in Ref. [8], in order to identify the source
of the problem, only the third order derivative were set equal to zero; obviously this attempt would not
have resolved the problem of the second–order derivatives – nonetheless, the results were not very good.
This suggested that the problem lies with the second–order (and not the third–order) derivatives. This led
to the idea of introducing a fifth–order Hermite interpolation, because in this case all the second–order
derivatives are available and hence they as well may be expressed in terms of Cartesian second–order
derivatives (for, the second–order derivatives with respect toξα are the covariant components of the
Hessian tensor). This shifts the problem from the mixed second– and third–order derivatives into those
of order 3, 4 and 5. As expected, the results obtained with the full fifth–order scheme (i.e., a fifth–order
extension of Scheme A) were much better than the corresponding third–order ones. However, those
obtained with the modified fifth–order scheme (i.e., by setting to zero the derivatives of order 3, 4, and
5) were not as good as hoped (for a coarse grid, this scheme behaves worse than the third-order Scheme

8This could be interpreted as a discrete implementation of the Kirchhoff shell hypothesis.
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A).

On the basis of these somewhat disappointing results, a new scheme has been explored and the
results are presented here. In this scheme (hereby referred to asScheme B), the second– and third–
order derivatives are treated as independent variables for each element of a given node (i.e., for each
node, the second– and third–order derivatives are allowed to assume eight different values). Of course,
Scheme B requires many more variables than Scheme A. Hence, as a compromise, we introduced the
novel scheme announced above (hereby referred to asScheme C, which is a combination of the other
two. Specifically, as stated in the beginning of this section the structure is assumed to be composed of
blocks (i.e., topologically hexahedral structures), and in the proposed Scheme C, the Scheme B approach
is used for the block–boundary nodes (i.e., nodes that are common to two or more blocks), and Scheme
A is used for all the interior nodes (i.e., for the large majority of the nodes). In order to validate this
scheme, we analyzed a thin plate like the one presented in Figures 1 and 2. Here, the plate is artificially
divided into two halves, and each of the two resulting plates is treated as a different block. Thus, for the
same plate we can use three schemes: (a) Scheme A (as in Figs. 1 and 2), (b) Scheme B (in which each
brick is considered as a separate block, and (c) Scheme C in which each of the two portion is treated
as a separate block. In Fig. 9 we present the first twenty frequencies obtained using the three different
schemes for analyzing this structure. WithKode 0–0we denote Scheme A for all the plate (this is the
same approach used in the preceding sections), whereas withKode 1–0andKode 1–1we denote Schemes
C; and Scheme B, respectively. One may note that these results are quite satisfactory.

In summary, the method is very promising, but further analysis is warranted. Specifically, more
extensive applications are needed. In particular, more complicated geometries should be examined.
Also, higher order schemes (i.e., the fifth order one) should be analyzed.
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Figure 1: Free square plate:ω̂1 vs1/N Figure 2: Free square plate:ω̂1 vs1/DOF

Figure 3: Clamped square plate:ω̂1 vs 1/N
Figure 4: Clamped square plate:̂ω1 vs
1/DOF

Figure 5: Free spherical shell:ω̂1 vs1/N Figure 6: Free spherical shell:ω̂1 vs1/DOF
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Figure 7: Double Guyan. Free square plate:
ω̂1 vs1/N

Figure 8: Double Guyan. Free square plate:
ω̂1 vs1/DOF

Figure 9: Free square plate: first twenty natu-
ral frequencies.
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