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Summary

The paper presents an overview of recent work by the authors and their collaborators on multi–
disciplinary optimization for conceptual design, based on the integrated modeling of structures, aerody-
namics, and aeroelasticity. The motivation for the work is the design of innovative aircraft configurations,
and is therefore first–principles based, since in this case the designer cannot rely upon past experience.
The algorithms used and the philosophy behind the choices are discussed.

Introduction

The aim of this paper is to present an overview of the work of the authors and their collaborators in
the field of MDO/CD (Multi–Disciplinary Optimization for Conceptual Design), for innovative aircraft
configurations. In this paper, we emphasize the philosophy behind the choices being used in developing
the methodology.

This paper is rather projected toward the future, towards what needs to be done and what are the
criteria to be used – the work performed in the past is briefly reviewed in this paragraph. The main
motivation and source of inspiration for our work has been a specific innovative aircraft configuration,
which has, as a distinguishing feature, a low induced drag. This was proposed by Frediani [1] and by
him denoted asPrandtl–Plane, in honor of the Prandtl [2] work on unswept box wings.3 The proposed
configuration is a counter–swept box–wing,i.e., a biplane with a backward–swept low front wing and
forward–swept high back wing (which acts as a horizontal stabilizer as well); these are connected to each
other by vertical streamlined connections. The emphasis has been on wing design, with the fuselage
assumed as given. Numerical and experimental studies performed in the past few years by the authors
and their collaborators (Refs. [5], [6], [7], [8], and [9]) have confirmed that the induced drag of this
configuration is considerably lower than the induced drag of an equivalent monoplane. This fact allows
one to reduce the wing–span of this configuration without major drag penalties, thereby facilitating the
capability of respecting the maximum spanwise dimensions (critical for the NLA – New Large Airplanes
– with classical wing configuration), as required by existing airport regulations. Moreover, the low
induced drag could allow one to reduce community noise (lower take–off power required, Ref. [10]) and
possibly chemical pollution. The methodology has been successfully applied also to the optimal design
of a Blended–Wing–Body configuration (see Ref. [11]).

Within this context (that is, in the process of assessing the pros and cons of the Prandtl–Plane),
the authors have developed (and are still in the process of developing) a computer code called MAGIC
(Multidisciplinary Aircraft desiGn of Innovative Configurations). MAGIC is an evolution of the code
FLOPS developed by Mc Cullers (see,e.g., Ref. [12]), which is essentially based on elementary and/or
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2Dipartimento di Ingegneria Aerospaziale e Astronautica, Università “La Sapienza,” V. Eudossiana 16, I-00184 Rome, Italy.
3This is closely related to the joined–wing concept. Comprehensive overviews on joined–wing configurations are presented

in Refs. [3] and [4].
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empirical algorithms. Such an approach is not possible for innovative configurations, for which the
designer cannot rely upon past experience. Thus, the first and foremost criterion used in developing
MAGIC is that the algorithm be based on first principles, whenever possible. This is the approach used
in particular in developing the MAGIC modules for structure, aerodynamics, and aeroelasticity (see,e.g.,
Refs. [13], [14], [15], [16], and [17]), which are all first–principles based and are described in this paper.

Another aspect of the philosophy used stems from the fact that we are interested in the conceptual
design phase (MDO/CD). Hence, it is highly desirable to use algorithms that produce accurate predic-
tions with a relatively small computational effort. Accordingly, in this work we address the advantages of
modeling (modal approach, boundary elements, reduced order models) over simulation (finite elements,
computational fluid dynamics) in the context of MDO/CD. In addition, the code MAGIC is geared specif-
ically towards for civil aviation; hence, advantage is taken of this aspect whenever possible. In summary,
the physical models chosen must be able to capture the essence of the phenomenon within the specific
application of interest, with the corresponding numerical algorithms being very efficient and at the same
time adequately accurate (and apt to be refined as much as necessary).

The last criterion we follow is that strong emphasis be given to the integration of the various disci-
plines. This implies not only that special care be given to the interfaces, but also that the concurrency
of certain types of analysis be exploited whenever possible. For instance, the fact that the natural modes
of vibration must be evaluated for the dynamic aeroelastic analysis implies that a modal analysis may be
used for the stress analysis as well. Similar considerations hold for steady and unsteady aerodynamics
algorithms. What we are saying here is that the final objective is to develop a code that is not a collection
of the codes used for the individual disciplines. It is necessary to start from scratch. Indeed, the methods
that are the most convenient for the individual disciplines are not necessarily the most convenient in the
global context. Therefore, our work is based upon a critical analysis of the methodologies that are best
suited for the stated goal.

On the basis of all these considerations, our choices have been towards the following methodologies:
(i) a linear elastic finite–element method for the wing structure,(ii) quasi–potential flows (i.e., flows that
are potential everywhere except for a zero–thickness wake surface emanating from the trailing edge) for
the aerodynamic analysis, with an integral boundary–layer analysis for the viscous effects (this is a good
example of taking advantage of the civil–aviation applications), and(iii ) modal analysis and reduced
order model (ROM) for aeroelasticity. All three of them assure the high efficiency required, with an
accuracy that is quite adequate within civil aviation applications. We will address these issues in some
details in the remainder of the paper.

Modeling vs. simulation in structural dynamics

We begin with structural dynamics, which presents a clear exemplification of what we mean by
“modeling” and “simulation,” and for which the advantages of modeling over simulation are apparent
(aerodynamics and aeroelasticity are examined in the following sections). In the following, we discuss
the linear formulation, which is standard in conceptual aircraft design. Combining the linearized momen-
tum equation with the constitutive equations for linear elastic material and the linear strain tensor yields
ρü + Lu = f, whereL denotes a tensor operator with Cartesian componentsLik(...) = −[ci jkl (...)/l ]/ j .4

4We prefer to derive the structural dynamics equations from the differential approach to emphasize the relationship between
finite–element (simulation) and modal (modeling) methods, as well as the commonality between solids and fluids. The same
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Using the Bubnov–Galerkin method, Ref. [18], one seeks an approximate solution of the typeu(x, t) =
∑N

n=1un(t)Ψn(x), where{Ψn} is a set of linearly independent functions which satisfy suitable boundary
conditions (for the issues related to the distinction between essential and natural boundary conditions,
see,e.g., Ref. [18]). The Galerkin equations are obtained by projecting the resulting expression in direc-
tion Ψn, to obtain a system of linear second–order differential equations, in the unknownu = {un}, given
by Mü+Ku = f, where the elements ofM = [Mkn], K = [Kkn], andf = { fk} are given by (neglecting
volume forces)

Mkn =
∫

VS

ρ Ψk ·ΨndV Kkn =
∫

VS

Ψk ·LΨndV fk =
∮

S
t ·ΨkdS (1)

Next, we discuss the choice for the functionsΨn. In the finite–element method, un typically denotes
nodal values of the displacement components, whereasΨn(x) are suitable interpolation functions. We
refer to this approach assimulation. Generally speaking, in order to have a good approximation of the
solution, the numberN of the unknownsun is very high (for a wing treated as a beam,N = 10÷30; for
the complete aircraft configuration,N = 104÷106). Thus, the numerical solution of the above equations
is highly computer intensive. As mentioned above, as an alternative, one may use a modal approach
(spectral method),i.e., setu(x, t) = ∑M

m=1qm(t)Φm(x), where{Φn} are the normalized natural modes of
vibration of the structure (eigenfunction of the operatorL ), which satisfy the equationLΦ = ρλΦ, with
homogeneous boundary conditions. In this case,M = I andK = Ω2, whereΩ2 = [ω2

nδkn] (with ω2
n = λn)

and the structural dynamics equations reduce to ¨q+Ω2q = e, wheree = {ek}, with ek =
∮

S t ·ΦkdS .

It is a rather common belief that the advantage of the modal approach (¨q+Ω2q = e) over the finite
element approach (Mü+Ku = f) is the fact that in the first the equations are uncoupled. Whereas this
fact is true in structural dynamics, this property does not apply in aeroelasticity and aircraft dynamics,
because in this case coupling appears through the aerodynamic forces, which are functions of the un-
knownu. Nonetheless, the modal approach is more advantageous in aeroelasticity and aircraft dynamics
as well – the reason is that, for smooth functions, the convergence of an expansion in terms of orthogonal
functions, such as the natural modes of vibration, has a very high rate of convergence.5 This implies
that even approximate natural modes are adequate, because the relevant aspect is the orthogonality of the
base functions, not the decoupling of the equations (in the code MAGIC, the approximate finite–element
modes of vibration are obtained by using the finite–element method described above, as applied to the
solution of the eigenvalue problem – it is easy to show that these approximate modes satisfy the same
orthogonality conditions as the exact ones).

Finally, it is easy to show that using the Galerkin method with the base functions given by the ap-
proximate eigenfunctions is fully equivalent to diagonalizing the finite–element equations and truncating
the system to the firstM modes. From this observation, we gather that the approximate–mode equa-
tions may (in the limit as the number of modesM tends to the number of finite element unknownsN)
contain as much information as the finite–element equations. However, the modal model may be re-
duced considerably in number, typically without much loss in accuracy. Indeed, in aeroelastic analysis,
M << N (the modes corresponding to the lowest frequencies are used; for a complete configuration,
M = 10÷30, a considerable reduction with respect to the finite–element approach, where for the full

results would be obtained using the Lagrange equations of motion.
5For a discussion of the convergence properties ofspectral methods(of which the expansion in terms of the natural mode

of vibration is a particular case), the reader is referred to Gottlieb and Orszag [19].
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configurationN = 104÷106). Consequently, it is apparent that, within a MDO/CD context, structural–
dynamics modeling (i.e., approximate–mode approach) is preferable to structural–dynamics simulation
(i.e., finite elements).6

In all of the papers cited above a simple equivalent–beam model has been used for the wing structure.
Recently, a more sophisticated model (beams plus in–plane loaded plates) has been added to MAGIC (see
Ref. [20] for details). A full three–dimensional finite–element method (which is based upon the Hermite
interpolation, and has been developed specifically for optimization but is not yet included in MAGIC), is
discussed in Ref. [21].

These models with different levels of sophistication may be combined by implementing an optimiza-
tion procedure proposed by Alexandrov and Lewis [22]; this procedure allows one to use a sophisticated
model used to “calibrate” a simple one, through an affine transformation which is kept constant during
several iterations of the optimization procedure. This yields the accuracy of the sophisticated model with
an efficiency only slightly lower than that obtained with the simple model.

Modeling vs. simulation in aerodynamics

Next, consider aerodynamics. Again, we begin with simulation methodologies, as useful background
for discussing the modeling methodology proposed here. In our definition, aerodynamics simulation is
based upon solution of the equations of conservation of mass (continuity), momentum (Euler or Navier–
Stokes), and energy, by a methodology broadly known as CFD (Computational Fluid Dynamics. The
CFD method most commonly used is the finite–volume technique, which consists of writing a discretized
form of the conservation principles for a small volume. This may be considered as a special approach
to obtain finite–difference expressions, and also as a very crude finite–element formulation for the above
equations (with weight functions equal to one within the element, and to zero otherwise – partition of
unity). Again, the number of degrees of freedom for a complete aircraft configuration is very high (e.g.,
105÷107, the lower numbers being obtained in the inviscid case, or when a inviscid–viscous coupling
is used,e.g., with a finite–volume Euler external–flow analysis coupled with a boundary–layer or thin–
Navier–Stokes viscous–flow analysis). Thus, these techniques are highly computer intensive; while
fundamental in a simulation environment, they are not suitable in a MDO/CD context, in which it is
desirable to utilize simpler methods, able to yield accurate solutions with computational efforts reduced
as much as possible.

Indeed, in the case of interest here – civil aviation – we are dealing primarily with high–Reynolds–
number attached flows, and traditional numerical methods in aerodynamics (where a boundary element
code is coupled with an integral boundary-layer analysis) are tools more convenient than CFD.7 Specifi-

6A few comments on convergence rate are in order. The convergence rate of the approximate–mode expansion is initially
similar to that of spectral methods (i.e., much higher than that for finite–elements) since, forM << N, theMth approximate
mode is virtually identical to the exact one. On the other hand, asM increases to its maximum value,N, the convergence rate
becomes gradually poorer, since forM = N, the modal expansion is fully equivalent to the finite–element one, as the two span
exactly the same space.

7Here, at the risk of oversimplifying the situation, we think of a fluid dynamicist as someone starting with very low Reynolds
number, in the limitRe= 0, and working his way up; indeed, much of the work in CFD started with low Reynolds number
flows. On the contrary, an aerodynamicist starts from attached flows with very high Reynolds number, in the limitRe= ∞, and
works his way down. Indeed, classical aerodynamic formulations are based upon Prandtl’s work on viscous/inviscid interaction,
with thin attached boundary layers, which imply very high Reynolds numbers. For the attached high–Reynolds–number flows
of interest here, the aerodynamicist’s approach is at least as accurate as that of the computational fluid dynamicist [23].
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cally, the method we propose for MDO/CD is a boundary–element analysis for compressible (subsonic)
quasi–potential flows (i.e., flows that are potential everywhere except for the wake surface, which is the
locus of the points emanating from the trailing–edge, Ref. [17]), coupled with an integral boundary–layer
analysis; the potential–viscous coupling is based upon the Lighthill [28] transpiration–velocity approach
(see last section). The reason for this choice is that boundary elements for quasi–potential subsonic
flows requires the same order of magnitude of computational effort as the methods typically used in in-
dustry for conceptual design (e.g., vortex–method analysis for incompressible potential flows), while at
the same time being obviously more sophisticated than those methods in terms of physical/geometrical
representation and considerably more accurate.

In this section, we present the formulation for the limited case of incompressible quasi–potential
flows, since the extension of the formulation to compressible flows is treated extensively in Refs. [14]
and [17], to which the reader is referred for details. An inviscid, incompressible, initially–irrotational
flow remains, at all times, quasi–potential. In this case, the velocity field,v, may be expressed asv = ∇ϕ
(whereϕ is the velocity potential). Combining with the continuity equation for incompressible flows,
∇ ·v = 0, yields∇2ϕ = 0. The boundary conditions for this equation are as follows. The surface of the
body, SB, is assumed to be impermeable; this yields(v− vB) · n = 0, i.e., ∂ϕ/∂n = χ := vB · n, where
∂/∂n = n ·∇, whereasvB is the velocity of a pointx ∈ SB, andn is the outward unit normal toSB. At
infinity, in a frame of reference fixed with the unperturbed air, we haveϕ = 0. The boundary condition
on the wake surface,SW , are obtained from the principles of balance of mass and momentum across a
surface of discontinuity and are given by:(i) the wake surface is impermeable, and(ii) the pressure,p,
is continuous across it. These imply that, forx on SW , (i) ∆(∂ϕ/∂n) = 0, where∆ denotes discontinuity
acrossSW , and(ii) ∆ϕ = constant in time following a wake pointxW (whose velocity is the average of the
fluid velocity on the two sides of the wake),i.e., ∆ϕ(xW , t) = ∆ϕ(xTE, t− τ), whereτ is the time required
to the material point to move from the trailing edge pointxTE to the wake pointxW . Hence,∆ϕ on the
wake equals the value it had whenxW left the trailing edge. Finally, the trailing–edge condition states
that, at the trailing edge,∆ϕ on the wake equalsϕ2−ϕ1 on the body, where the subscripts 1 and 2 denote
the two sides of the wing surface (for a detailed analysis of this issue, see Morino and Bernardini [16]).
Once the above problem has been solved, the pressure is obtained from the Bernoulli theorem.

In the methodology used in the code MAGIC, the above problem for the velocity potential is solved
by a boundary–element formulation. The boundary integral representation for this problem, using the
above wake boundary conditions, is given by (see Refs. [14] and [17])

ϕ(x, t) =
∮

SB

(
Gχ−ϕ

∂G
∂n

)
dS(y)−

∫
SW

∆ϕTE(t− τ)
∂G
∂n

dS(y), (2)

with G = −1/4π‖y− x‖ and χ prescribed from the above impermeability boundary condition. Note
that, in the absence of the wake, Eq. 2, in the limit asx tends toSB, yields a boundary integral equation
for ϕ on SB, with χ on SB known from the boundary condition. Onceϕ on the body is known,ϕ (and
hencev and, by using Bernoulli’s theorem,p) may be evaluated everywhere in the field. The situation is
similar in the presence of the wake, since, by applying the wake and trailing–edge conditions,∆ϕ on the
wake may be expressed in terms ofϕ over the body at preceding time steps. It should be noted that the
geometry of the wake is not knowna priori. However, in the case of airplanes one may assume, without
much loss of accuracy, the wake to be parallel to the undisturbed flow (small–disturbance assumption),
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which we take to be the direction of thex-axis (for a free wake analysis, see Ref. [14]); consistently, we
have thatτ is given byτ = (xW −xTE)/U∞ . Note that now the integral operator is linear. Then, taking the
Laplace transform of Eq. 2, one obtains

ϕ̃(x) =
∮

SB

(
Gχ̃− ϕ̃

∂G
∂n

)
dS(y)−

∫
SW

∆ϕ̃TEe−sτ ∂G
∂n

dS(y), (3)

where ˜ denotes Laplace transformed functions. Equation 3 may be discretized by dividing the surfaces
SB andSW into small elements,S j ( j = 1· · · ,NB), andSn (n = 1, · · · ,NW) respectively, and assumingϕ̃, χ̃,
and∆ϕ̃ to be constant within each element (zeroth–order boundary–element formulation, see Ref. [17];
for a third–order formulation, see Ref. [16]). This yields the matrixEIE (used in the next section), which
relates the vector of the values of the velocity potential (evaluated at the element centers), to the vector
of the normal–wash,χ = ∂ϕ/∂n (also evaluated at the element centers).

The above formulation is used for steady as well as unsteady aerodynamics. For the evaluation of
the steady–state potential–aerodynamics loads, we use the formulation of Ref. [24] – an exact extension
of the Trefftz formulation, Ref. [25]; this is completed by the steady boundary–layer analysis of the
viscosity effects, discussed in the last section. The unsteady aerodynamics formulation is used for flutter
and gust response (when the viscosity effects are typically negligible). Its coupling with the structural
dynamics formulation is discussed in the next section.

Finally, note that for compressible unsteady flows, the mesh required for convergence is much finer
than that for unsteady incompressible flows. Thus, this is another item to which apply the Alexandrov
and Lewis [22] procedure discussed at the end of the preceding section. The same holds true for the
transonic steady–state analysis, which requires the use of volume elements to take into account the non–
linear terms (see,e.g., Ref. [26]). On the other hand, for the unsteady case (needed for the flutter
analysis), it may be shown that is still possible to use a linear formulation (i.e., linearizing the volume
terms, Ref. [27]). Nonetheless, this is still considerably more computer intensive than the subsonic case,
and hence the Alexandrov and Lewis procedure is a good candidate here as well.

Aeroelastic modeling

In this section, we show how the structural and the aerodynamic modeling may be coupled to obtain
the formulation for aeroelasticity. This is accomplished by noting that the vector of the generalized
aerodynamic forces is given by ˜e = qDE(š)q̃, whereqD = 1

2ρ∞U2
∞ is the dynamic pressure, whereas

š= s̀ /U∞ is the dimensionless Laplace parameter (also known as complex reduced frequency; note that
the reduced frequency is given byk = Imag(š)). The matrixE is given (in the Laplace domain) by
E(š) = EGFEBT(š)EIE (š)EBC(š) where: (i) the matrixEBC (obtained from the boundary condition,χ =
(U∞ i +∑n u̇nΦn) · n) relates the vector̃fχ of the dimensionless normalwash at the element centers, to
the generalized coordinates vector o˜q, as f̃χ = EBCq̃; (ii) EIE (obtained from the integral equation, see
paragraph that follows Eq. 3) relates the vectorf̃ϕ of the dimensionless velocity potential at the element
centers, tõfχ, as f̃ϕ = EIE f̃χ; (iii ) the matrixEBT (obtained from the linearized Bernoulli theorem,cp =
−2(ϕ̇ +U∞∂ϕ/∂x)/U2

∞ ) relates the vector ˜cp of the pressure coefficient at the element centers, tof̃ϕ, as
c̃p = EBT f̃ϕ; (iv) the matrixEGF (obtained from the definition ofek) relates the vector ˜e of the generalized
aerodynamic forces, to ˜cp, asẽ = qDEGF c̃p.

Combining with the structural dynamics equation discussed above (¨q+Ω2q = e), one obtains, in the
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Laplace domain,

s2q̃+Ω2q̃ = qDE(š)q̃ (4)

The solution of this equation involves some traditional methods, such as theV–g and thep–k methods,
briefly illustrated in Ref. [9]. These methods are cumbersome and not apt for use in MDO/CD. In
recent years a new trend has emerged that consists of a matrix rational approximation of the function
E = E(k), such that the resulting equations form a system of first–order ordinary differential equations,
whose stability analysis requires simply the use of a root locus of the eigenvalues of a matrix by varying
U∞ (finite–state aeroelasticity, or reduced–order model). Probably, the earliest example of this approach
is the work of Jones [29] who gives a rational approximation for the Theodorsen function and the corre-
sponding time–domain approximation for the Wagner function. In the matrix approach, the concept was
introduced by Roger [30]. A widely used approach is that by Karpel [31]. The specific reduced–order
model of interest here is based on the model presented in Ref. [15]. This consists of expressing the
aerodynamic matrixE(š) as8

E(š)' Ê(š) = E2š2 +E1š+E0 +(šI+F)−1G (5)

whereEk, G, andF are fully populated square matrices, which are independent of ˇs. These matrices are
evaluated by a least square procedure on a set of numerical data for the matrix of the aerodynamic forces
E(š. The aeroelastic system resulting from Eqs. 4 and 5 is equivalent to

s2q̃+Ω2q̃ =
1
2

ρ∞U2
∞

(
š2E2q̃+ šE1q̃+E0q̃+ r̃

)
(šI+F)r̃ = Gq̃, (6)

which may be easily transformed into the time domain to yield a system of linear homogeneous first–
order differential equations of the type ˙x = A(U∞)x, wherexT = [qT , q̇T , rT ]. This approach allows one to
perform the flutter analysis through a root locus of the eigenvalues of the matrixA(U∞), thereby avoiding
the above mentioned traditional methods, which unnecessarily complicate the optimization procedure.

Viscous flow modeling

In this section, we consider the modeling for the viscous–flow correction. The analysis is limited to
steady attached high–Reynolds–number flows, where the vortical region (i.e., boundary layer and wake)
has a small thickness (as mentioned above, viscosity effects are usually not included in conceptual design
for unsteady aerodynamics, which is only needed for the linear analysis of flutter and gust response).
Outside boundary layer and wake, the flow is irrotational and is solved by using a potential–flow model
obtained by introducing, in the boundary integral formulation described above, a viscous–flow correction
based on Lighthill’s equivalent sources approach [28]. This consists of modifying the impermeability
boundary conditions∂ϕ/∂n = vB, into ∂ϕ/∂n = vB ·n+ χV , where the transpiration velocityχV is given
by

χV =
∂

∂s1

∫ δ

0
(ue−u)dη+

∂
∂s2

∫ δ

0
(ve−v)dη (7)

8The leading term being ofO(š2) is motivated by the fact that we wantÊ(š) to have the same order asE(š) (i.e., O(š2),
which stems fromEBC(š) = O(š), EIE (š) = O(1), EBT (š) = O(š), whereasEGF (š) is independent of ˇs).

936

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

936



wheres1 ands2 are local orthogonal arclengths over the wing surface,δ is the thickness, andue andve

the velocities at the external edge of the boundary layer respectively ins1 ands2 directions; a similar
correction is used on the wake surface, with∆(∂ϕ/∂n) = (χV )2 +(χV )1 (see Ref. [32] for an in–depth
analysis of this point). An integral formulation is used for the boundary layer (for attached flows, this
approach yields results as accurate as those obtained by differential methods, with considerably reduced
computational effort).

We have considered three models with different levels of sophistication: (1) a very simple model
based upon the classical Blasius theory used as strip theory, (2) a two–dimensional integral boundary–
layer formulation used as strip theory (see below), and (3) a three–dimensional integral boundary layer
formulation (see also below). Note that, in general, three–dimensional effects within the boundary layer
may be neglected with a minor loss of accuracy for applications to wings with large aspect ratio and
reduced sweep angle; this is even more applicable in the case of the Prandtl wing, where no tip effect
exists. In all the models, the viscosity correction to the potential flow is evaluated through the Lighthill
[28] transpiration velocity, as mentioned above (through bothSB andSW).

The first model, limited to laminar flows, with an empirical correction for turbulent flows, was used
initially, just to have an order of magnitude of the correction. In the second one, the laminar portion
is computed by the Thwaites [33] method, the turbulent portion by the Green [35] ‘lag-entrainment’
method; the transition from laminar to turbulent flow is detected by the Michel [34] method. Matching of
the boundary–layer solution with the viscous–flow–corrected potential–flow solution is obtained through
classical direct iteration. The viscous drag is evaluated with the Squire and Young [36] approach. Other
contributions to the drag (such as wave drag) are currently evaluated by empirical corrections from Ref.
[12]. Finally, the three–dimensional integral boundary–layer algorithm uses two equations for momen-
tum (extension of von Ḱarmán equation to three–dimensional flows) coupled by two auxiliary equations:
the first is the kinetic energy equation and the second is the transport equation for the maximum shear
stress coefficient (‘lag’ equation; see Ref. [6] for details).

The two–dimensional integral boundary–layer formulation, used as ‘strip–theory’ in three–dimensional
applications, has been validated by comparison with experimental results available in literature, in the
case of:(i) isolated wing,(ii) biplane, and(iii) box–wing configuration (see Ref. [6], which presents in
particular the polar atRe= 5.1·105 of a box–wing configuration; the results are in good agreement with
the experimental and numerical results by Gall and Smith [37].

On the basis of these results, we believe the strip–theory approach to be a better candidate for
MDO/CD in that yields comparable results with less computational effort; however, the verdict is still
open and the issue should be addressed within the context of the methodology by Alexandrov and Lewis
[22] discussed above.
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