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Summary

An aeroelastic model for helicopter rotors in forward flight is presented and applied
to predict the vibratory loads transmitted to the hub. A nonlinear blade structural model
is coupled with a free-wake, potential flow BEM solver and the periodic regime blade
deformation is determined by the harmonic balance method. Numerical results examine
the influence of the aerodynamic modeling on the prediction of the vibratory loads for the
ECD BO-105 in a level flight configuration.

Introduction

The aim of this paper is the presentation of an aeroelastic model for helicopter rotors in
forward flight addressed to the evaluation of the vibrating hub loads arising during regime
conditions.

The availability of a reliable tool for the prediction of vibrating hub loads is of primary
interest in the helicopter design. Indeed, they are source of fuselage vibrations that have
a significant impact on the fatigue-life of the structure (and hence on maintenance costs)
and in turn produce acoustic disturbances inside the cabin that could cause unacceptable
ride discomfort. Hub loads are the results of the rotor blade aeroelastic behavior and their
evaluation requires the introduction of accurate structural and aerodynamic models. In
particular, the structural model has to take into account both the strong coupling between
bending and torsion degrees of freedom of the blade and the nonlinearities arising from the
significant deflections that slender rotor blades usually undergo. The aerodynamic model-
ing has to be able to describe 3D, unsteady flows, with particular accuracy on the prediction
of the wake effects that are of great importance in the aerodynamics of rotors in forward
flight.

Here, the aeroelastic model is obtained by coupling the equations of the blade dynam-
ics introduced by Hodges and Dowell [1], with the aerodynamic loads given by a free-
wake boundary element method (BEM) for potential flows [2], [3]. The resulting integro–
differential model is integrated through a Galërkin approach followed by a harmonic bal-
ance method for the definition of the periodic blade deformation arising in regime flight
conditions. The numerical investigation concerns the prediction of vibratory hub loads on
the ECD BO-105 in level flight conditions. Three models for the determination of the un-
steady aerodynamic loads are used in order of assess the importance of the aerodynamic
model used in the analysis, when the objective is the evaluation of the cabin vibrations
induced by the main rotor. Specifically, the aeroelastic response is evaluated by using the
BEM solver both under the assumption of prescribed wake shapes and using a free-wake
procedure. These two solutions are compared also with that obtained through the quasi-
steady aerodynamic model with inflow correction.
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Blade structural dynamics model

In this work the blade structural dynamics is described through the nonlinear flap-lag-
torsion equations of motion presented by Hodges and Dowell [1]. These are based on a
beam-like model and are valid for straight, slender, homogeneous, isotropic, nonuniform,
twisted blades, undergoing moderate diplacements (second order terms are retained in the
equations). Eliminating the radial displacement from the set of equations by solving it in
terms of local tension (i.e., the blade is assumed to be inextensible for bending deflections
and radial displacements are simply geometric consequences of transverse bending [4]), for
no hinge offset and for mass and tensile axes coinciding with the elastic axis, the in-plane
displacement,v(x, t), and the out-of-plane displacement,w(x, t), of the elastic axis along
with the blade cross-section elastic torsion deflection,φ(x, t), are governed by the following
set of three lead-lag, flap and torsion dimensionless integro–differential equations
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wherex is the spanwise position,θ(x, t) is the pitch angle distribution,Λ1 andΛ2 are the
dimensionless flap and lag bending stiffnesses (Λ21 = Λ2−Λ1), κ is the dimensionless
torsion rigidityµ1, µ2, µ are the dimensionless mass radii of gyration,K is the square of the
ratio between the blade cross-section polar radius of gyration and the blade cross-section
mass radius of gyration, whereasβpc is the precone angle. In addition,Lv and Lw are,
respectively, in-plane and out-of-plane dimensionless aerodynamic forces per unit length,
whereasMφ is the dimensionless aerodynamic pitching moment per unit length (see Ref.
[4] for details on the definition of the parameters appearing in Eqs. 1, 2 and 3).

Free-wake BEM rotor aerodynamics

The aerodynamic loads forcing the blade dynamics equations are evaluated by a bound-
ary integral approach for potential, incompressible flows. It is based on the formulation
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introduced in Ref. [2], and on the free-wake algorithms presented in Ref. [5] for hovering
rotors and in Ref. [3] for rotors in forward flight.

Introducing the velocity potential,ϕ, such thatv = ∇ϕ, the conservation of mass yields
the Laplace equation,∇2ϕ = 0, with solution that may be given in terms of the following
boundary integral representation

ϕ(x, t) =
∫

SB

(
∂ϕ
∂n

G−ϕ
∂G
∂n

)
dS(y)−

∫
SW

∆ϕ
∂G
∂n

dS(y) (4)

In Eq. 4,G = −1/4π‖x− y‖ is the fundamental solution of the Laplace equation,SB and
SW denote body and wake surfaces, respectively, whereas∆ϕ(xW, t) = ∆ϕ(xTE, t−τ), with
τ denoting the time taken by a wake material point to be convected from the trailing edge to
xW. In addition,∂ϕ/∂n= vB ·n, for the boundary condition of body surface impermeability.
For x approachingSB, Eq. 4 represents a compatibility condition betweenϕ, ∂ϕ/∂n on the
body and∆ϕ on the wake. Since∂ϕ/∂n is known from the boundary condition, Eq. 4 yields
an integral equation which may be used to obtain the values ofϕ on SB. Finally, once the
potential on the body surface has been evaluated, the Bernoulli theorem yields the pressure
distribution and hence the aerodynamic forces acting on it.

In the case of free-wake analysis, the shape ofSW is obtained as part of the solution.
Indeed, onceϕ on the surface is known, fromv = ∇ϕ the velocity is evaluated in the field
and, in particular, at the wake points. Then, at each step of the time-marching procedure
these are moved accordingly and the shape ofSW is continuously renewed.

Harmonic balance solution for blade aeroelastic equations

Equations 1, 2 and 3 governing the blade structural dynamics coupled with the aerody-
namic forcing terms given by the BEM aerodynamic solution yield the aeroelastic integro–
differential model to be integrated. Here, considering a hingeless rotor, the space integra-
tion is performed through the Galërkin method using the non-rotating modes of the blade
as shape functions. The resulting aeroelastic system consists of a set of nonlinear ordinary
differential equations of the type

M(t) q̈+C(t) q̇+K(t)q = f nl
str(t,q)+ faer(t,q) (5)

whereq denotes the vector of the Lagrangean coordinates (modal amplitudes), whereas
M ,C, andK are linear, time-periodic, mass, damping, and stiffness structural matrices
(note that these matrices are time-variant because of the cyclic pitch). Nonlinear structural
contributions are collected in the forcing vectorf nl

str(t,q), whereas vectorfaer(t,q) collects
the aerodynamic loads. Specifically, for the pressurep given by the BEM solution, the
generalized forces related to lead-lag, flap, and torsion equations are, respectively, given by

f v
aerj =−

∫
S

pny Ψ j dS ; f w
aerj =−

∫
S

pnzΨ j dS ; f φ
aerj =−

∫
S

p(ynz+zny)Θ j dS
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whereΨ j are the bending shape functions andΘ j are the torsion shape functions used in
the analysis (y is the chordwise coordinate,z is the coordinate parallel to the shaft andny

andnz denote components of the unit vector orthogonal to the blade surface).

Since the aim of the work is the prediction of the vibrating hub loads during regime
forward flight conditions, the aeroelastic system in Eq. 5 is integrated using the harmonic
balance approach. For a periodic forcing term,f = f nl

str + faer, it consists of assuming pe-
riodic blade deformations,q, given as the solution of the algebraic equations arising from
equating the harmonic components of the LHS of Eq. 5 with the harmonic components of
its RHS. Specifically, expressingq andf in terms of the following Fourier series

q(t)=q0+
N

∑
n=1

[qc
n cos(Ωnt)+qs

n sin(Ωnt)] ; f(t)=f0+
N

∑
n=1

[f c
n cos(Ωnt)+f s

n sin(Ωnt)]

whereΩn = nΩ, with Ω representing the rotational speed of the rotor (fundamental fre-
quency of periodicity), and combining with Eq. 5 yields the following periodic aeroelastic
solution in terms of the sine and cosine harmonic components

q̂ =
[
M̂ + Ĉ+ K̂

]−1
f̂ (6)

whereq̂T = {q0 qc
1 qs

1 qc
2 qs

2 · · ·}, f̂T = {f0 f c
1 f s

1 f c
2 f s

2 · · ·}, and matricesM̂ , Ĉ andK̂ are
given by the combination of theq–harmonics with those of theM ,C, andK matrices. If
M ,C, andK were constant, in Eq. 6 one would have

M̂ + Ĉ+ K̂ =



K 0 0 0 0 · · ·
0 −Ω2

1M +K Ω1C 0 0 · · ·
0 −Ω1C −Ω2

1M +K 0 0 · · ·
0 0 0 −Ω2

2M +K Ω2C · · ·
0 0 0 −Ω2C −Ω2

2M +K · · ·
...

...
...

...
... · · ·


and the equations for theq–harmonics would be uncoupled. On the contrary, in the problem
under examination the structural matrices are periodic and hence, once expressed in terms
of the Fourier series and combined with the harmonics ofq, they yield fully-populated
M̂ , Ĉ andK̂ matrices and theq–harmonic equations in Eq. 6 are coupled each other. This
is shown, for instance, by the form of the stiffness matrix that reads

K̂ =



K0
1
2Kc

1
1
2Ks

1
1
2Kc

2
1
2Ks

2 · · ·
Kc

1 K0 + 1
2Kc

2
1
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2
1
2Kc

1
1
2Ks

1 · · ·
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1
1
2Ks

2 K0− 1
2Kc

2 −1
2Ks

1
1
2Kc

1 · · ·
Kc

2
1
2Kc

1 −1
2Ks

1 K0 + 1
2Kc

4
1
2Ks

4 · · ·
Ks

2
1
2Ks

1
1
2Kc

1
1
2Ks

4 K0− 1
2Kc

4 · · ·
...

...
...

...
... · · ·
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(similar expressions for̂M andĈ are used) The solution of Eq. 6 is obtained iteratively.
Starting from an initial-guess periodic blade deformation, first the corresponding periodic
aerodynamic forces are calculated and then their harmonics are used in Eq. 6 to obtain a
new blade deformation. In turn, this yields a new set of periodic aerodynamic forces and
the procedure is applied until two subsequent iterations give the same blade deformation.

Numerical results

The main rotor of the ECD BO–105 is considered as a test case, in order to investigate
about the impact of the aerodynamic model on the prediction of the vibrating hub loads.
This rotor has four blades with radiusR = 4.91m, constant chordc = 0.39m, and a twist
angle of−8◦. The configuration analyzed is a level flight with advance ratioµ = 0.3 and
rotational speedΩ = 40.4rad/s.

Figure 1: Torsion deflection at blade tip.

The solutions obtained considering three different aerodynamic models in the aeroelas-
tic equations are examined. These are the free-wake BEM model and the prescribed-wake
BEM model presented above, with the addition of the widely-used quasi-steady model
(with induced velocity from Glauert’s model). Figure 1 shows the comparison in terms of
the torsion deflection, whereas Fig. 2 compares the 4/rev hub loads (forces and moments
in a fuselage–fixed frame of reference) computed with the different aerodynamic models
(note that the hub is forced by load harmonics that are multiple of the number of the rotor
blades). In both comparisons the results from the BEM model differ considerably from
those given by the quasi-steady model, whereas the inclusion of wake distorsion produces
limited effects in terms of blade deflection. However, the 4/rev hub loads are more signif-
icantly affected by the wake shape and this is because of the fact that they are given by a
combination of the higher harmonics of the blade deflections (3/rev,4/rev,5/rev).
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Figure 2: Fuselage–frame 4/revhub loads.

Conclusions

For helicopter rotors in forward flight, a nonlinear structural model has been coupled
with a free-wake BEM aerodynamic solver and a harmonic balance approach is used to
integrate the resulting aeroelastic equations. The numerical results given by the aeroelastic
model based on BEM aerodynamics differ considerably from those obtained through the
widely-used quasi-steady aerodynamic model and this confirms the necessity of using an
accurate aerodynamic model for rotor aeroelasticity analysis. In addition, the results have
shown that a free-wake algorithm has to be used for an accurate prediction of the high-
frequency loads transmitted from the rotor to the hub.
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