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Summary

This paper presents a new element-free approach to the numerical analysis of non-
Newtonian fluid flows. In this approach, the spatial discretization is based on the Indirect
Radial Basis Function Networks (IRBFN) method where no element-based decomposition
of the computation domain is required. High-order time discretization methods (Adams-
Bashforth/Adams-Mouton) are used together within a three-step splitting scheme. A unified
framework for the numerical analysis of generalized Newtonian fluid (GNF) and viscoelas-
tic fluid flows is proposed and its implementation is verified.

Introduction

During the last twenty years, significant effort has been made to develop nu-
merical methods for the simulation of viscoelastic fluid flows. In most cases, mixed
finite element formulations are used in which, besides the velocityv and the pres-
surep, the extra stressτ is treated as an additional unknown. For the new approach
presented in this paper, radial basis functions (RBFs) are used together with the
collocation method for approximating functions and their derivatives whereas high-
order time stepping schemes is used with the splitting technique for the temporal
discretization. The idea of using radial basis functions (RBFs) for solving PDEs
was first proposed in [2] and is hereby referred to as the Direct Radial Basis Func-
tion Network (DRBFN) method. Recently, a new method, namely the Indirect Ra-
dial Basis Function Network (IRBFN) was proposed in [5],[6] for the solution of
differential equations and steady Navier-Stokes equations. In the DRBFN method,
a function is first approximated by the RBFN and its derivatives are then calculated
by differentiating such closed form RBFN approximant. In the IRBFN method, on
the other hand, the highest derivative is first decomposed into radial basis func-
tions. Lower derivatives and the function itself are then successively obtained via
symbolic integrations. More recently, the method is extended to solve time depen-
dent problems including those governed by parabolic, hyperbolic PDEs as well as
convection-diffusion equations [4]. In this paper, time integration schemes are cou-
pled with the IRBFN method by an extension of the splitting technique proposed
in [3] for the Navier-Stokes equations.
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Mathematical formulations

Consider an isothermal incompressible flows of a non-Newtonian fluid in a
finite connected domainΩ ∈ Rd, d = 2,3. Let Γ1 andΓ2 be the two boundaries of
Ω, Γ1∩Γ2 =∅. The balance equations of mass and momentum can be written as

∇ ·v = 0, (1)

ρ
(

∂v
∂t

+v ·∇v
)

= −∇p+ηs∇2v+∇ · τ, (2)

whereρ is the constant density,v the velocity field,p the pressure,ηs the solvent
viscosity, andτ the non-Newtonian contribution to the total stress tensor.

The constitutive equation for GNF is given by

τ = 2ηpd−2ηsd, (3)

whered = 1/2(∇v+(∇v)T) is the rate-of-strain tensor,ηp = ηp(γ̇) is the viscosity
as a function oḟγ, the magnitude of the rate-of-strain tensor,γ̇ =

√
tr (d2) . It should

be noted that (2) is written in a generic non-Newtonian form that can be used for
both GNF and viscoelastic fluids. As a result, (3) is modified so that (2) and (3)
can express the momentum and constitutive equations as described in [1]. In the
present work, two well-known models of GNF are considered. The first one is the
power-law model given by

η = mγ̇n−1, (4)

wheren is the power-law exponent andm is another model parameter. The second
one is the Carreau-Yasuda model given by

η−η∞

η0−η∞
= [1+(λγ̇)a](n−1)/a (5)

whereη0 is the zero-shear-rate viscosity,η∞ the infinitive shear rate viscosity,λ
a time constant,a the dimensionless parameter representing the transition region
between the zero-shear-rate region and the power-law region.

For the Oldroyd-B fluid,τ is defined by the constitutive law as follows [1]

λ
(

∂τ
∂t

+v ·∇τ− τ ·∇v− (∇v)T · τ
)

+ τ = 2ηpd, (6)

whereλ > 0 is the relaxation time,ηp > 0 the polymeric viscosity.
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The above equations can be written in dimensionless form as follows

∇ ·v = 0, (7)

Re

(
∂v
∂t

+v ·∇v
)

= −∇p+α∇2v+∇ · τ, (8)

with the dimensionless constitutive equation for the viscoelastic (Oldroyd-B) fluid

We

(
∂τ
∂t

+v ·∇τ− τ ·∇v− (∇v)T · τ
)

+ τ = (1−α)(∇v+(∇v)T), (9)

or the constitutive law for the GNFs

τ = 2
(
βγ̇n−1−1

)
d (Power-Law), (10)

τ =
(

2(1+Wea γ̇a)(n−1)/a +
η∞

ηr

)
d−2αd (Carreau-Yasuda), (11)

subject to initial and boundary conditions

v = vΓ1 on Γ1, v(0) = v0 in Ω, (12)

τ = τΓ2 on Γ2, τ(0) = τ0 in Ω (13)

where the Reynolds numberRe= ρVL/ηr , the Weissenberg numberWe= λV/L
in whichV, L andηrV/L are characteristic velocity, length and stress, respectively.
The ratioα = ηs/ηr whereηr = ηs+ηp for viscoelastic fluids;ηr = ηs for power-
law fluids whereasηr = η0−η∞ for Carreau-Yasuda fluids.

Time discretization

In this paper, the splitting scheme proposed in [3] is extended to deal with the
non-Newtonian fluid by considering the stress tensor defined in the constitutive
equation (9),(10) or (11) for the Oldroyd-B, Power-law or Carreau-Yasuda fluid,
respectively, as the forcing termf in the Navier-Stokes equation. The incompress-
ible Navier-Stokes equation is first integrated in time where the nonlinear advec-
tion term is approximated by the explicit Adams-Bashforth scheme and the linear
diffusion term is discretized by the implicit Adams-Mouton scheme for stability
improvement [3]. The resulting semi-discrete system can be then solved in the fol-
lowing three steps
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Step 1

ṽ−vn

∆t
=−

Je−1

∑
q=0

βq(v ·∇v)n−q + fn+1, (14)

Step 2a

∇2p̄n+1 =
Re
∆t

(∇ · ṽ), (15)

∂p̄n+1

∂n
= n ·

[
−Re

Je−1

∑
q=0

βq(v ·∇v)n−q−α
Je−1

∑
q=0

βq(∇× (∇×vn−q))

]
,

Step 2b

v̂− ṽ
∆t

=− 1
Re

∇p̄n+1, (16)

Step 3

vn+1− v̂
∆t

=
α
Re

Ji−1

∑
q=0

γq∇2vn+1−q, (17)

whereJe, Ji are the order of the explicit and implicit time integration schemes re-
lated to coefficientsβq andγq, respectively [3].

It should be noted that, at a given time step, the forcing termfn+1 is the divergence
of the viscoelastic stress tensor which can be calculated by an explicit time integra-
tion scheme (e.g. Runge-Kutta, Adams-Bashforth) using the value of the velocity
field from the previous step.

Space discretization by the IRBFN method

The semi-discrete system (14)-(17) is discretized in space by the IRBFN method.
A functionu(x, t) and its derivatives can be approximated by the IRBFN method as
follows [4]

u(x, t)≈ ψT(x)UUU(t) =
M

∑
i=1

U (i)(t)ψ(i)(x), (18)
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u, j(x, t)≈ ψT
, j(x)UUU(t) =

M

∑
i=1

U (i)(t)ψ(i)
, j (x), (19)

u, j j (x, t)≈ ψT
, j j (x)UUU(t) =

M

∑
i=1

U (i)(t)ψ(i)
, j j (x), (20)

whereM is the number of data points,UUU(t) the nodal values of functionu(x, t), and

ψ(x) = φT
j (x)Φ−1

j , (21)

ψ, j(x) = φT
j, j(x)Φ−1

j , (22)

ψ, j j (x) = φT
j, j j (x)Φ−1

j . (23)

In the IRBFN method,φ j, j j (x) is a given set of basis functions whose nonzero

components can be chosen as multiquadricsφ(i)
j, j j (x) =

√
r(i)2 +s(i)2

or thin plate

splinesφ(i)
j, j j (x) = r(i)2m

logr(i) wherer(i)(x) = ||x−x(i)|| is the Euclidian norm of

vector(x− x(i)). The lower derivativeφ j, j(x) and the functionφ j(x) in (22) and
(21) can be then obtained via successive integrations ofφ j, j j (x) in j th direction. It
should be noted that the integration process gives rise to constants of integration
which contribute to the formulations ofφ j(x) andφ j, j(x) in (21)-(22) . The matrix
Φ j results from the application ofφ j(x) at every data points. More details on the
IRBFN formulations for transient problems can be found in [4].

Numerical Examples

The present method performs well in simulating a number of non-Newtonian
flows, including those of GNF and Oldroyd-B fluids. Due to lack of space only
limited results are presented here in written form. In the simulation of the parti-
cle migration in concentrated suspensions, a GNF model is used as the constitutive
equation for the particle flux. The concentration profile is investigated using the
present approach and the steady state of the kinematics as well as the concentra-
tion profile are shown in Figure 1 where the numerical solution agrees well with
the profile proposed in [7]. In another example is considered the numerical simu-
lation of fluid flows in polymer processing. The problem is described as axisym-
metric Poiseuille flow of Carreau-Yasuda fluid [1] (Figure 1). The start-up planar
Poiseuille flow of the Oldroyd-B fluid whose velocity profiles at different times are
shown in Figure 1 in comparison with the analytical solution from [8].
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Figure 1: Suspension flow: velocity profile (top left), particle concentration profile
(top right). Axisymmetric Poiseuille flow of polymer melts: velocity profile (bottom
left). Start-up flow of the Oldroyd-B fluid: velocity profile ( bottom right).

1337

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

1337



Conclusions

A new element-free approach to the numerical analysis of non-Newtonian fluid
flows has been presented in this paper. The main feature of the approach is to com-
bine high-order methods for time and space discretizations based on the IRBFN
method and multistep time integration methods with the application of the operator
splitting technique.
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