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Summary 
 

This document introduces a mesh-free computational procedure for simulation of 
coupled heat, mass, momentum, and solute transport in solidification systems. The 
physical model takes into account the pure liquid, nucleation and movement of the 
globulitic solid phase, formation of the rigid porous solid matrix, and complete solid 
within mixture continuum theory. The computational procedure is based on explicit 
Diffuse Approximate Method (DAM) with nine-noded support, second order polynomial 
trial functions, and Gaussian window weighting functions. Treatment of velocity and 
pressure fields is described in detail. 

Introduction 

Metal castings are fundamental to practically all other manufacturing industries [1]. 
Although the manufacturing path from the melt to the finished shape is most direct, it 
involves coupled physical phenomena of great complexity which have to be 
simultaneously controlled. Castings are usually of complex shape which represents an 
additional difficulty. Therefore, numerical modeling and simulation is increasingly 
applied in casting. The field has expanded very rapidly in recent years owing both to the 
continuing exponential growth in hardware performance and the ongoing developments 
of physical models [2] and numerical techniques [3,4,5]. A common defect that occurs in 
casting is macrosegregation [6], an inhomogenous distribution of alloy elements on the 
scale of the product. It is caused by solute transport, primarily due to flow of solute-
enriched liquid and movement of solute-depleted solid grains. The macrosegregation 
modeling can be based on the two-phase or one-phase model of the solidification system. 
The one phase model is used in this work, derived from the averaging of the microscopic 
equations for the solid and the liquid phase, defining macroscopic mixture quantities [7] 
and relations between macroscopic and microscopic quantities [8]. Despite the powerful 
features of well established numerical methods such as the finite difference (FDM), finite 
volume (FVM), the finite element (FEM), the spectral (SM), and the boundary element 
methods (BEM), there are often substantial difficulties in applying them to realistic 
phase-change situations [9]. A common drawback of the mentioned methods is the need 
to create a polygonisation, either in the domain and/or on its boundary. This type of 
meshing is often the most time consuming part of the solution process and is far from 
being fully automated. In recent years, a new class of methods has been developed which 
do not require polygonisation but use a set of nodes to approximate the solution. The 
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rapid development of these type of methods and their classification is elaborated in the 
very recent monographs [9,10]. Because of the clear advantages of these methods in 
geometrically involved situations a great incitement for their introduction in casting 
simulations exists [11].  

Governing Equations 

Consider a two-component solidification system with a material that can exist either 
in the solid S  or in the liquid phase L , confined to domain Ω  with boundaryΓ . The 
volume fractions of these two phases add up to unity 1V V

L Sf f+ = . The macroscopic 
mass conservation of the system is governed by 

( ) 0v
t
ρ ρ∂
+∇ ⋅ =

∂
r , V V

S S L Lf fρ ρ ρ= + , V V
S S S L L Lv f v f vρ ρ ρ= +

r r r
,            (1,2,3) 

with the mixture densityρ and velocityvr  are defined from phase densities and velocities. 
The macroscopic momentum conservation of the system is governed by 

( ) ( ) ( )
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( ) ( ) ( )2 2, 2
3

v v vµ µ µ µ∇ ⋅ = ∇ +∇ ⋅ − ∇ ⋅ ∇ ⋅ ⋅  τ v Ir r r                                                    (5)                                        

where P  represents the pressure, 
℘τ the Newtonian extra stress tensor, f℘

r
the body force, 

g℘

r the inter-phase force on phase ℘, and c+  the linearised Heaviside function over 

interval 2 xδ  

  { } ( ) ( )
1;

/ 2 ;
0;

x x
c x x x x x x x

x x

δ
δ δ δ δ

δ
+

≥ +
= + > > −
 ≤ −

                                                                  (5)                                        

Note that the first term of the last row in equation (4) sets-in in the so called slurry region 
with V V C

S Sf f<  where solid grains are free to move, and the last term of equation (4) 
sets-in in the mushy zone, where solid phase with V V C

S Sf f>  moves with the system 
velocity 

S SYSv v=
r r

. V C
Sf  represents the rigid solid fraction limit. The stress tensors are 

calculated from the following logic 
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( ),S S S Svµ=τ τ r
, ( )( ), ,L L L L Sv v vµ=τ τ r r r ,

2.5
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S S S

f f
f f f
µµ µ

−

 
= − − 

 
       (6,7) 

the interphase force is modeled by the Darcy law with the Kozeny-Karman permeability 
with 

Kδ  denoting a small number  

( )g L
L SYS

L

v v
K
µ ρ

ρ
= − −

r r r ,    ( )3

0 2

1 V
S

V
S K

f
K K

f δ
−

=
+

                                                                 (8,9) 

The body force is modeled by the Bussinesq approximation with ar  denoting 
acceleration, 

0ρ ℘
, 

0T  and  
0

m f ℘l
 the reference density, temperature and mass fraction of 

species l  in phase ℘, and
Tβ℘
,β℘l

denoting the respective thermal and concentration 

expansion coefficients. 

0 0 0f 1 ( ) ( )m m
Ta T T f fρ ρ β β℘ ℘ ℘ ℘ ℘ ℘ ℘= ⋅  − − − −  l l l

r r                                                           (10) 

The energy conservation of the system is governed by 

( ) ( ) ( ) ( )V V
eff S S S S L L L Lh vh k T vh f v h f v h

t
ρ ρ ρ ρ ρ∂

+∇ ⋅ = ∇ ⋅ ∇ +∇ ⋅ − −
∂

r r r r             (11) 

where T  represents mixture temperature,
effk the effective heat conduction, and h  

represents the mixture enthalpy, defined from the phase enthalphies and fractions. c℘ , 
0T   

and 
LT stand for the specific heats, the reference temperature and the solidus temperature, 

respectively.  

V V
S S S L L Lh f h f hρ ρ ρ= + ,   

0

T

S S
T

h c dT= ∫ ,   ( )
0 0

STT

L L S L
T T

h c dT c c dT L= + − +∫ ∫     (12,13) 

The macroscopic conservation of species l  in the system is governed by 

( ) ( ) ( )

( ) ( )

m m m V m V m
S S S S L L L L

m m V m V m
eff eff S S S S L L L L

f v f v f f v f f v f
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ρ ρ ρ ρ

∂
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r r r r
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where m f
l

represents mixture concentration of species l , defined from phase mass 
fractions m f℘l
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m V m V m
S S S S L L L Lf f v f f v fρ ρ ρ= +

l l l

r r                                                                                       (15) 

effD
l

 represents the effective species and D℘l
phase diffusion coefficients. The 

macroscopic equations are closed by the following microscopic assumptions. The relative 
movement of the solid phase with respect to the liquid phase is described by assuming a 
linear drag force 

( ) 21 ;
18

;

V
V V CS

L S L S S S

effS

V V C
SYS S S

fv d a f f
v

v f f

ρ ρ
µ

− + − <= 
 ≥

r r
r

r

                                                                (16) 

The solid grains move with the grain transport equation and grow as 

( )
2

max 1exp
22

n
S

n T Tn v n
t TT σσπ

  ∆ −∆∂
+∇⋅ = −   ∂ ∆∆   

r , 
1
33

4

V
S

S

fd
nπ

 =  
 

                   (17,18) 

where
NT∆ represents the mean nucleation undercooling corresponding to the maximum 

of the distribution, Tσ∆ is the standard deviation of the distribution, 
maxn is the maximum 

density of nuclei given by the integral of the total distribution from zero undercooling to 
infinite undercooling, and 

LT T T∆ = − , with 
LT  standing for the liquidus temperature. 

The three parameters strongly depend on the grain refiner and melt composition. The 
total liquid volume fraction is related to the local temperature according to the lever rule 
(18). For calculation of the solute concentration in the liquid phase the relation (19) is 
used, with k  representing the equilibrium partition ratio and 

fT the melting temperature 

11
1

V L
L

L f

T Tf
k T T

ρ
ρ

 −
= −  − − 

,    
( )( )1 1 1

m
m

L m
L

ff
f k

=
+ − −

l

l

                                    (19,20) 

Solution over time-step includes calculation of mixture velocity and pressure fields, 
temperature and concentration fields from the macroscopic equations, and phase 
fractions, concentrations, velocities and enthalpies from the microscopic equations. 

Solution Procedure 
 

  The described set of equations is solved by the explicit DAM. This mesh-free method 
has been introduced by Nayroles [12] and further developed by Sadat [13,14]. The 
solution of nonlinear scalar transport equation by this method is given in our  
accompaniying paper [16]. Here we focus on a novel solution of the velocity and pressure 
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fields through an fully explicit procedure. This is very important in present context since 
the explicit nature of the calculations preserves the small algebraic equation systems used 
for calculation of each of the unknowns. The DAM is based on the approximation of the 
unknown function value 

nΦ  and its derivatives in point 
npr  by the moving least squares 

method which uses the values of 
iΦ  at I  points ; 1,2,...,ip i I=

r , situated in the vicinity 
of and including 

npr . One can write the following approximation of the function and its 
first and second order partial derivatives 

( ) ( )1

K

k n k k np p pα ψ=Φ ≈ −∑
r r r          ( ) ( )1

K

k n k k np p p
p pς ς

α ψ=

∂ ∂
Φ ≈ −

∂ ∂
∑

r r r      (21,22) 

( ) ( )
2 2

1 ; , ,K

k n k k np p p x y
p pςξ ςξ

α ψ ς ξ=

∂ ∂
Φ ≈ − =

∂ ∂
∑

r r r ;                                                (23) 

Functions 
kψ have been chosen as polynomials 

1 1,ψ =  ( )2 ,xp pψ =
r  

3 ,ypψ =  

( )4 ,x yp p pψ =
r ( ) 2

5 ,xp pψ =
r  2

6 ypψ = , i.e. 6K = . The coefficients 
n kα  can be 

calculated from the minimization of the following functional 

( ) ( ) ( ) 2

1
1

I
K

kn n i n i n k k i n
i

p p p pα ω αψ=
=

ℑ = − Φ − −  ∑ ∑
r r r r                                                (24) 

with
nω representing a suitable weighting function [15]. The pressure field is solved by 

taking the divergence of the momentum equation and considering the mass conservation 

( ) ( ) ( ) ( )
2

2

2
v v vv P f

t t t
ρρ ρ ρ∂ ∂ ∂

∇⋅ = ∇ ⋅ = − = −∇⋅ ∇⋅ −∇ +∇⋅ ∇ ⋅ +∇⋅  ∂ ∂ ∂
τ

rr r rr (25) 

The pressure  is calculated from a false transient of the following equation towards the 
steady-state 

( ) ( )
2

2

2
P P vv f

t t
ρρ∂ ∂

= −∇ −∇⋅ ∇ ⋅ +∇⋅ ∇ ⋅ +∇⋅ +  ∂ ∂
τ

rrr                                       (26) 

with Neumann boundary conditions obtained by multiplication of the momentum 
equation with the normal derivative 

( ) ( ) ( )P v vv f n
n t

ρ ρ
Γ

∂ ∂ = − −∇⋅ +∇⋅ ∇ ⋅ +∇⋅ ⋅ ∂ ∂ 
τ

rr rr r                                              (27) 

Let us assume the initial velocity and pressure fields are known. The initial pressure is 
calculated from a three-level time-step procedure 

( ) ( )' 2 ' 2 1 0
0 0 0 0 0 0 0 0 2

2P P P v v f t
t

ρ ρ ρρ − −− + = + −∇ −∇⋅ ∇⋅ +∇ ⋅ ∇ ⋅ +∇⋅ + ∆   ∆ 
τ

rr r  

                                                                                                                                         (28) 
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where '
0P represents the value from previous iteration, and 

1 2,ρ ρ− −
represent the value of 

density at time
0 0, 2t t t t− ∆ − ∆ . The pressure equation boundary conditions are 

discretised as 

( ) ( )0 0 1 1
0 0 0 0 0

v vP v v f n
n t

ρ ρ ρ− −

Γ

− +∂  = −∇⋅ +∇ ⋅ ∇ ⋅ +∇ ⋅ ⋅ ∂ ∆ 
τ

r r rr r r                                 (29) 

After calculation of the pressure field at time 
0t , the new velocity field at time 

0t t+ ∆  is 
calculated from 

( )0 0
0 0 0

v tv v v P f
t

ρ ρ
ρ
∆ = −∇⋅ −∇ +∇⋅ + ∆ 

τ
rr r r                                                            (30) 

Afterwards, the solid phase movement (16) is calculated, followed by the solution of the 
grain transport (17,18), and the solution of the energy and species conservation equations. 
The microscopic equations are solved at the end of one internal timestep iteration. After a 
sufficiently small difference between results of the two successive internal timestep 
iterations is achieved, the next timestep is attempted. The computational details regarding 
solution of the scalar transport equations are given in an accompanying paper [15].  
 

Conclusions 
 
The present paper introduces DAM for numerical evaluation of highly complex 
solidification models. Attempts of solving such models were previously made only more 
established numerical methods. Probably for the first time it copes with solution of the 
momentum and pressure equations in the DAM context in fully explicit way, preserving 
the small systems of equations that need to be solved for each node. The method appears 
efficient, because it does not require a solution of the large systems of equations like for 
example the RBFCM [11]. Instead, small (in our case 6x6) systems of linear equations 
have to be solved in each timestep for each node, representing the most natural and 
automatic domain decomposition. The numerical examples with solution of the 
temperature, velocity and concentration fields in DC cast aluminum alloys and their 
match with the FVM will be shown at the conference. 
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