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Abstract

Radial Basis functions (RBFs) have been successfully developed as a
truly mesh-less method to find the numerical solutions of partial differ-
ential equations (PDEs). In particular, the asymmetric RBF collocation
method (Kansa’s method) is one of the most frequently used methods
due to its ease of implementation. To achieve high accuracy, the resul-
tant system of RBF-PDE problem usually becomes badly conditioned.
We propose in this paper an improved solution method based on an affine
space decomposition that decouples the influence between the interior and
boundary collocations.

1 Introduction

The original idea of the RBFs is to interpolate scattered data {~xk, f(~xk)} for
k = 1, . . . , N by using the function space span{φ(rk) : k = 1, . . . , N} where φ
is any radial basis function and rk = ‖~x− ~xk‖2 denotes the Euclidean distance
between the variable ~x and the centers ~xk. All these RBFs can be scaled by a

simple transform rk ←
rk

c
where c is referred as the shape parameter.

Previous authors have observed experimentally that the accuracy of RBF
methods is severely influenced by the shape parameter c and the separating
distance h of the centers. The trade-off for this increased accuracy and ill-
conditioning of the associated linear systems can be explained by the “uncer-
tainty relation” given by Schaback [8, 9, 10]. Despite of its superior convergence
properties, the mesh-less RBF methods have not been applied at present to
large-scale PDE simulations. One of the main reasons is that both the global
and compactly supported RBFs give rise to either very large full matrices, or
large wide-banded matrices that are known to be severely ill-conditioned. The
optimal convergence in using the compact support RBFs occurs as the support
becomes increasingly more global unless a multilevel scheme is invoked.
To solve RBF-PDE systems on a fixed arithmetic precision (floating point

relative accuracy, i.e., the commonly used double precision), the problem of
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ill-conditioning and rounding error will eventually have great impact on the ac-
curacy. For numerical verifications, we focus in this paper upon the asymmetric
formulation (Kansa’s method [4, 5]) for solving PDEs with MQ-RBF as its con-
ditioning and accuracy can be greatly affected by the shape parameter c. On
the other hand, our proposed method can be extended to other RBFs directly.
A main goal of this paper is to provide a new numerical scheme that

1. is easy to implement,

2. is efficient comparing with existing methods,

3. have a larger critical shape parameter,

4. is stable for large shape parameters beyond critical, and

5. does not require distinct data points distribution.

The outline of this paper is as follows: in Section 2, the Kansa’s asymmetric
RBF-PDE formulation is reviewed. In Section 3, the affine space approach is
introduced. Summary of results are given in Section 4. Lastly, the conclusion
is given in Section 5. Analysis and numerical results are left to a forthcoming
paper.

2 Asymmetric RBF-PDE Method

Consider the boundary value problems (BVPs) of the form

Lu = f(~x) in Ω ⊂ IRd,

Bu = g(~x) on ∂Ω,
(1)

where d denotes the spatial dimension, ∂Ω denotes the boundary of the domain
Ω, L is an interior differential operator, and B is an operator that specifies the
boundary conditions of Dirichlet, Neumann or mixed type. Both f and g are
given functions mapping IRd → IR .
In Kansa’s asymmetric RBF collocation method, the unknown solution u of

(2) is approximated by a linear combination of RBFs in the form of

u ≈ U(~x) =
N
∑

k=1

λk φk(~x), (2)

where φk(~x) = φ(‖~x− ~xk‖), φ(·) is any radial basis function, and ‖ · ‖ indicates
the Euclidean norm. Let {~xj}

N
j=1

be the N centers and collocation points in
Ω ∪ ∂Ω. We assume the centers are arranged in such a way that the first NI

points and the last NB points are in Ω and on ∂Ω, respectively.
Using collocation method to ensure that U(~x) satisfies (1), we obtain a

numerical approximation of u. To solve for the N unknown coefficients ~λ =

2
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[λ1, . . . , λN ]
T in (2), we need to solve the following N (hopefully) linearly inde-

pendent equations. In matrix form, we have the resultant system given by

[

ΦL

ΦB

]

~λ =

[

~f

~g

]

, or Φ~λ = ~b, (3)

where ~f ∈ IRNI , ~g ∈ IRNB , ΦL ∈ IR
NI×N , ΦB ∈ IR

NB×N , and

(~f)i = f(~xi), for i = 1, . . . , NI ,

(~g)i = g(~xi), for i = 1, . . . , NB ,

(ΦL)ik = Lφ(~xi − ~xk), for i = 1, . . . , NI , k = 1, . . . , N,

(ΦB)ik = Bφ(~xi − ~xk), for i = NI + 1, . . . , N , k = 1, . . . , N.

(4)

This method is often named as asymmetric RBF collocation method or Kansa’s
method. The matrix given by (3) is generally non-symmetric and full. This
resultant system is known to be ill-conditioned when N becomes large.
Unlike the interpolation problems, the Kansa’s method could result in sin-

gular resultant matrix for some special centers arrangements. Experimental
evidence (see Hon and Schaback [3]) indicates that the Kansa’s method is ro-
bust with regard to the positioning of centers with a general prerequisite that
all centers are distinct.
When c

h
is fixed at a low ratio, the resulting linear system remains relatively

well-conditioned (condition number of the problem is significantly less than the
inverse of machine epsilon). This is the case on which different preconditioning
techniques can be employed; see Beatson et al.[1, 2] for interpolation problems
and Ling et al.[6, 7] for PDE problems. To take the full advantage of RBF
superior convergence rate, one must keep increasing the c

h
ratio. For any given

arithmetic precision and solution method, there exists a (numerical) “critical”
shape parameter c∗ after which the rounding error becomes substantial and the
numerical approximation is no longer trustworthy.

3 Affine Space Approach

The matrix Φ in the resultant system (3) consists of two parts: the interior
collocation matrix ΦL and the boundary collocation matrix ΦB, resulting from
the interior operator L and boundary operators B, respectively. It has been
observed by many authors that combining these matrices with different “length
scales” usually worsens the problem of ill-conditioning (comparing with the
interpolation problems). In this section, we proposed an affine space approach

aimed to circumvent the above problem. The RBF unknown coefficient vector ~λ
is decomposed by the orthonormal basis of the null space of ΦB. We then obtain
a better conditioned reduced matrix system for the new coefficient vector.
From (3), we know the unknown coefficients ~λ must satisfy ΦB

~λ = ~g. This

suggests the coefficient vector ~λ must lie in an affine space of NB, namely

~λ = Φ†
B~g +NB~γ, (5)

3
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where Φ†
B ∈ IR

N×NB is the pseudoinverse of ΦB and NB ∈ IR
N×NI is the null

space matrix of ΦB. Both matrices, Φ
†
B and NB, can be obtained from the SVD

of ΦB. Putting (5) into the interior PDE portion of (3) given by ΦL
~λ = ~f,

results in the following reduced system to solve for another unknown coefficient
vector ~γ ∈ IRNI ,

(ΦLNB)~γ = ~f − ΦLΦ
†
B~g, (6)

where the reduced matrix (ΦLNB) ∈ IR
NI×NI is a square matrix. Since NB is

orthogonal, the length scale of the reduced matrix in (6) is completely deter-
mined by the PDE interior operator L. The original RBF-PDE systems (3) and
the affine space approach (5)+(6) are mathematically identical. However, due
to the presence of ill-conditioning and rounding error, the matrices and vectors
dimensions found in (5)+(6) could vary in practices.
As the c

h
ratio increases and as the RBF-PDEmatrices become ill-conditioned,

any singular values of ΦB less than a default tolerance are treated as zero nu-
merically (although the matrix could still be mathematically full rank). As
a result, the null space matrix NB will be of size N × (N −M), where M :=
rankSV D(ΦB) < NB and N−M is the nullity of ΦB. Consequently, the reduced
matrix is no longer square but of size NI × (N −M). Since N −M > NI , the
reduced system (6) is underdetermined and the new unknown coefficient vector
~γ is of length N − M . Furthermore, the reduced matrix could also be rank
deficient, i.e., rankSV D(ΦLNB) < N −M . Without assuming the system is of
full-rank, the reduced system (6) is solved by either QR or SVD (abbreviated
by AQR and ASVD, respectively) for the new coefficient vector ~γ.
In the traditional Kansa’s method, extra work is needed to ensure all centers

are distinct, and ideally to ensure the minimum separating distances among the
centers are equal in magnitude. The fact that our proposed algorithm can handle
identical or extremely close centers gives extra flexibility to the mesh-less RBF
methods.

4 Results

The GE method is the fastest solver for all N ; whereas SVD and ASVD are
the most time consuming methods as the singular value decompositions of full
matrices are required. The CPU times used for setting up the affine space
methods are roughly the same as the QR-time since SVD is only applied to
a much smaller matrix NB. Since the reduced system (6) is of smaller size
comparing with the resultant system (3), we see that AQR-time < QR-time. It
is worth noting that the Matlab’s function MLDIVIDE (our reported GE-time)
is optimized for nonsingular square matrices (using Matlab’s function LU to
preform the same Gaussian eliminations would only take slightly fewer CPU
time than our reported QR-time). We compare these methods as follows:

GE: The method is the best direct method in terms of efficiency and accuracy
although it could be unstable for ill-conditioned systems. The limitation
is that the GE method cannot be used on singular formulations.

4
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QR: The method are not recommended for all cases due to its extreme insta-
bility for ill-conditioned problems and is costly compared with GE.

SVD: The most costly method that does not result in the best accuracy. On
the other hand, this is the only direct method that is suitable for extremely
ill-conditioned systems and singular formulations.

AQR: The method is able to handle ill-conditioned system and achieve higher
accurate results with a reasonable cost. The AQR method also allows sin-
gular formulation that further simplify the setup of some PDE problems.

ASVD: The method is similar to AQR in performance, but needs a much
higher cost and is not recommended for practical problems.

To sum up, the GE method is still the best choice for well-conditioned RBF-
PDE systems. To take full advantage of the spectral convergence of RBFs, the
AQR method should be employed. Although some direct methods can handle
singular formulations, they all have their own drawbacks. Our proposed AQR
method is much more flexible and make the setup of Kansa’s method easier than
ever.

5 Conclusion

We propose an affine space approach for improving the Kansa’s method. Our
method decouples the influence between the interior and boundary collocations,
is easy to implement, and is able to achieve better accuracy. The method used
in this paper allows the use of larger RBF shape parameter. Comparing with
different direct approaches, the extra work of our method can be compensated
when the same accuracy is obtained by a smaller number of data points. The
proposed method can also be benefit from the previous work of domain decom-
position.
On the other hand, it requires further development and the numerical ex-

periments reported here should only be considered as exploratory work. More
work is needed to further verify the numerical observations and to find a robust
numerical scheme.
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