
Massively Parallel Computations by a General-Purpose Finite
Element Analysis Code – IPSAP

Seung Jo Kim1, Chang Sung Lee2, Jeong Ho Kim3, Jin Woo Park4

Summary
Introduction is made of the parallel finite element analysis code called IPSAP which

is based on the parallel domain-wise multifrontal solver. The domain-wise multifrontal
solver of IPSAP can overcome most of difficulties and disadvantages associated with direct
solution methods in massively parallel finite element computations. By using IPSAP, we
solved the largest problem ever solved by a direct solvers while sustaining 191 Gflop/s with
256 CPUs on our self-made cluster system, Pegasus. We also implemented and incorpo-
rated a block Lanczos algorithm based on the domain-wise multifrontal solver into IPSAP
and solved eigen problems with 7 millions of DOFs within an hour. The characteristics
of Active Fiber Composites was investigated through the Direct Numerical Simulation and
vibration analysis of aerospace launch vehicle was carried out using IPSAP.

Introduction
In the finite element computations, solving of the sparse linear system of equations

arising from the finite element discretization, is the most time-consuming part. To handle
the huge sparse matrices effectively, numerous types of solvers have been developed which
can conveniently be classified into direct and iterative solvers. Direct solvers perform direct
factorization of the global stiffness matrix considering the non-zero sparse patterns of the
matrix, followed by the solution of the equation by the substitution procedure. On the other
hand, iterative solvers perform matrix–vector or vector–vector computations repeatedly
until the solution converges within prescribed error bound.

In general, iterative methods can show greater performance than direct methods for
certain types of problems. However, iterative methods do not guarantee the numerical
robustness of direct solvers. This is important especially for those applications character-
ized by stiff systems such as finite element applications in structural and solid mechanics.
Also, for general finite element applications in industries and academia, it is very impor-
tant that the solution can be obtained within estimated time. For these reasons, most of the
commercial finite element packages have adopted direct solvers. Direct solvers are also
considerably more efficient than iterative solvers in handling problems with multiple right-
hand sides such as structural analysis problems with multiple load cases and implicit time
integration problems with constant stiffness matrices. The block Lanczos algorithm for
eigenvalues problems is also a good example that can benefit from the efficiencies inherent
in direct solvers.

1Professor, Department of Aerospace Engineering, Seoul National University, Korea
2Department of Aerospace Engrg., Seoul Nat. Univ. (currently at Samsung Electronics Co. Ltd.)
3Korea Institute of Science and Technology Information, Korea
4Post Doctoral Researcher , Dep. of Aerospace Engrg., Seoul National University, Korea

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

51

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

However, when it comes to large-scale parallel computations, direct solvers suffer
from poor characteristics such as relatively large storage requirements and higher rate of
increase in operation counts compared to iterative methods. Furthermore, direct solvers
are generally more difficult to parallelize compared to iterative solvers and require much
more communications between processors resulting in poor scalability. Consequently,
iterative solvers have been preferred in large-scale parallel finite element computations
arena[1],[2],[3]. One of the most successful research codes for large-scale parallel finite el-
ement analysis with iterative solvers may be Salinas [3] with FETI [1], [2] style algorithm.

Despite the difficulties and disadvantages in adopting direct solvers for massively par-
allel finite element computations, direct methods are still more desirable for numerical
robustness. In [4], an efficient implementation of the domain-wise multifrontal solver was
proposed. The capability and the performance of the solver was tested and showed very
high level of efficiency. In this paper, examples of massively parallel computations carried
out using general finite element program, IPSAP (Internet Parallel Structural Analysis Pro-
gram) are provided. An efficient implementation of the domain-wise multifrontal solver
constitutes the solver module of the IPSAP to obtain high level of performance and nu-
merical robustness. The characteristics of smart structures, AFC(Active Fiber Composites)
[5] was investigated through the DNS (Direct Numerical Simulation) approach [6] and the
vibration analysis of an aerospace launch vehicle was successfully carried out using the
IPSAP on our self made cluster system Pegasus, with 400 Intel Xeon processors.

IPSAP based on the domain-wise multifrontal solver
The domain-wise multifrontal solver is at the core of the IPSAP, the finite element

code for massively parallel structural finite element analysis. Therefore, the domain-wise
multifrontal solver is discussed mainly.

Multifrontal techniques are generalization of the frontal technique, to deal with gen-
eral sparse matrices with multiple frontal matrices [7]. Frontal methods were originally
introduced as a solution procedure for the finite element method to minimize core storage
requirements by eliminating the variables during the element assembly process [8]. There
have been significant progress in the multifrontal methods and they are considered to be
the most efficient direct solvers for the solution of general sparse system of linear equa-
tions. One of the most famous serial and parallel implementation is that of Gupta et al. [9].
However, by the generalization the advantages of frontal solvers used in conjunction with
the finite element method of not having to assemble the global matrices has been lost. In
addition, most of the multifrontal solvers available including [9] do not incorporate out-of-
core algorithm which was used extensively in original frontal methods to minimize core
memory requirements.

The idea of domain-wise multifrontal method by proposed by Kim et al. [10] extends
the original frontal technique in finite element view point to use multiple fronts. Although
algebraically equivalent to the generalized multifrontal methods, this approach eliminates
the need to assemble the global stiffness matrix which is well suited for large-scale parallel
finite element analysis. As each frontal matrix can be mapped to matrix from finite element

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

52

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Figure 1: Illustration of the recursive substructuring procedure

domain, domain-wise parallelism can be accomplished by decomposing the finite element
domain into multiple subdomains. This is much more advantageous than redistribution
of the global matrix after assembly associated with multifrontal solvers for general sparse
matrices. In finite element analysis, the domain-wise multifrontal method, divides the finite
element domain into two subdomains recursively until appropriate number of elements are
included in each domain. The fully assembled degrees of freedom (DOFs) in each domain
are eliminated by the static condensation procedure, and neighboring domains are merged
together in the reverse order to form a new domain. This process is repeated recursively
until all of the element subdomains are merged. Figure 1 illustrates a simple example for
a 2-D finite element domain. Thus, the domain-wise multifrontal method can be regarded
as a recursive substructuring technique since the elimination of internal or fully assembled
DOFs of the given domain is called substructuring in of structural analysis terms.

As domain-wise multifrontal solvers build frontal matrix equation for each domain as-
signed to the processor, the domain-wise multifrontal solver have the same level of domain-
wise parallelism as iterative solvers based on domain decomposition method. Figure 2
illustrates the domain-wise parallelism of the multifrontal solver.

Serial and parallel implementations of the domain-wise multifrontal solver

To achieve high level of performance in modern cache-based systems, it is important
that the algorithm be factored to perform dense matrix operations. The recursive sub-
structuring procedure of the domain-wise multifrontal solver can be conveniently divided
into two stages. The first step which in [9] is referred to as ’extend-add’ operation, is
the construction of a new frontal matrix by merging old frontal matrices from neighboring
domains. In the second step, assembled DOFs from the newly constructed frontal matrix
equation are eliminated. It should be noticed that the most of the time is consumed in the
second step. The basic matrix equation of the new domain can represented as:

[

K11 K12
K21 K22

]{

u1
u2

}

=

{

f1
f2

}

(1)

where the subscripts 1 and 2 respectively represents quantities related to internal or as-
sembled DOFs and those related to external or surface DOFs. After static condensation,
equation 1 is transformed to:

K̄22u2 = (K22 −K21K−1
11 K12)u2 = f2 −K21K−1

11 f1 = f̄2 (2)

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

53

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Forward-
substitution

Back-
substitution

Factorization,
Forward-
substitution

Back-
substitution

Factorization,

��

��

��

��

��

��

���

���

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��������

������
������

��������������������

������
������
��������������������

��������������������

��������������������

��������������������

��������������������

������
������

�������������������������

������
������
�����������������������

��������������������

�������������������������

�������������������������

������
������

������
������

������
������

 � �
 � � !�!
!�!!�!
!�!
"�""�"
"�""�"

#�##�#
#�##�#

$�$$�$
$�$$�$

%�%%�%
%�%%�%

&�&&�&
&�&&�&

'�''�'
'�''�'
'�'

(�((�(
(�((�(
(�()�))�)
)�))�)

*�**�*
*�**�*

+�++�+
+�++�+
+�+

,�,,�,
,�,,�,
,�,

Proc 0, 1 Proc 0, 1, 2, 3Proc 0 Proc 1

Proc 3Proc 2 Proc 2,3

Figure 2: Domain-wise parallelism of the domain-wise multifrontal solver

The computations required to obtain K̄22 can be implemented utilizing BLAS level 3 and
LAPACK routines. This guarantees optimized performance along with portability.

In parallel domain-wise multifrontal solver, after the independent computations within
each processor, the domains are merged across the processors. Then, dense matrix com-
putations for substructuring are performed in parallel over related processors. Although
PBLAS and ScaLAPACK are parallel implementation of BLAS and LAPACK, respec-
tively, they cannot be adopted to the present implementation due to their requirements of
the block-cyclic matrix distribution with constant block size. The parallel extend-add al-
gorithm proposed in [9] is adopted for the domain-wise multifrontal solver. The parallel
dense linear algebra subroutines are implemented using BLAS, LAPACK for dense matrix
computations and BLACS for communications.

Block Lanczos eigensolver

Eigensolver is implemented using the domain-wise multifrontal solver taking use of
the efficiency of handling multiple right-hand sides based on the block Lanczos algorithm.
BLZPACK [11] was adopted which implements block Lanczos algorithm. For typical
structural dynamics analysis represented by:

(K−λM)X = 0 (3)

where K and M are the stiffness and mass matrices, respectively, shifting-and-inverting
technique is used to improve the solution through modifying the original equations to:

M(K−δM)−1MX = µMX (4)

with shifting value δ and shifted eigenvalue µ. The inverting of (K− δM) is replaced by
factorization and substitution with multiple right-hand-side vectors.

Applications

Direct Numerical Simulation of Active Fiber Composites

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

54

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Active Fiber Composites (AFC) composed of piezoelectric fibers and matrix, pos-
sess much potential for applications to adaptive structures. One major advantage of AFC
are their ability to create anisotropic laminate layers for applications requiring off-axis or
twisting motions. We have adopted microscopic modeling of AFC structures to accurately
predict local failure mechanisms. Piezoelectric fiber and matrix were modeled separately
using 3,369,600 eight-node solid elements with the total of 10,543,005 degrees-of-freedom.

Figure 3: Finite element model and stress distribution of AFC

The elapsed time was 2,139 seconds with 256 CPUs on the Pegasus system. Figure
4 shows local stress distributions that could not be observed with homogenized models.
Moreover, inhomogeneous non-periodic effects could be observed which cannot be ob-
served with unit-cell approaches.

Vibration analysis of a rocket model

A full-scale vibration analysis of an aerospace launch vehicle was carried out using
IPSAP. The ATLAS V500 launch vehicle was modeled with 255,550 solid elements with
the total number of DOFs of 1,201,511. The total of 20 eigenvalues and eigenvectors were
extracted with 64 processors of the Pegasus system.

The Salinas program based on FETI-DP [1, 2] considered as the state-of-the-art among
iterative solvers, took less than 10 minutes to solve a dozen of eigen modes of a million
DOF model using 3,000 processors [3]. However, in practical view, such computing ca-
pacity is not easy to come by. The present direct solver based methods running on cost-
effective cluster systems can be regarded as the practical alternative.

Concluding remarks
In this work, general finite element code, IPSAP based on the domain-wise multi-

frontal solver for massively parallel finite element analysis was presented. The domain-
wise multifrontal solver has provided scalability and numerical robustness for large-scale
parallel finite element analysis. The local stress distribution of an Active Fiber Composite
(AFC) structure was investigated using the DNS approach. Also, vibration analysis of an
aerospace launch vehicle was carried out using IPSAP on the self-made Pegasus cluster
system.

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

55

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Figure 4: Finite element model and natural mode shapes of ATLAS V500 launch vehicle

Reference
1. Farhat, C., Lesoinne, M. and Pierson, K. (2000), “A scalable dual-primal domain

decomposition method,” Numer. Lin. Alg. Appl., 7, 687-714.
2. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., and Rixen, D. (2001), “FETI-DP:

a dual-primal unified FETI method - part I: a faster alternative to the two-level FETI
method,” Internat. J. Numer. Meths. Engrg., 50, 1523-1544.

3. Bhardwaj, M., Pierson, K., Reese, G., Walsh, T., Day, D., Alvin, K., Peery, J. Farhat,
C. and Lesoinne, M. (2002),”Salinas: A scalable software for high-performance
structural and solid mechanics simulations,” Proceedings of the IEEE/ACM SC2002
Conference, Baltimore, MD, 16-22.

4. SJ Kim, CS Lee, JH Kim, M Joh, S Lee (2003), ”IPSAP: A high-performance par-
allel finite element code for large-scale structural analysis based on domain-wise
multifrontal solver,” Proc. IEEE/ACM SC2003 Conference, Phoenix, AZ

5. Seung Jo Kim, Jun Seok Hwang, Seung Hoon Paik (2003) “Direct Numerical Sim-
ulation of Active Fiber Composites”, SPIE’s 10th Annual Symposium on Smart
Structures and Material, San Diego, CA.

6. Seung Jo Kim, Chang Sung Lee, Hea Jin Yeo, Jeong Ho Kim, and Jin Yeon Cho
(2002) “Direct Numerical Simulation of Composite Structures”, J. Composite Ma-
terials, Vol. 36, No. 24. pp. 2765-2785.

7. S. Duff and J. K. Reid (1973), “The multifrontal solution of indefinite sparse sym-
metric linear equations,” ACM Trans. Math. Software, 9, 302-325

8. B. M. Irons (1970) “A frontal solution program for finite element analysis,” Int. J.
Numer. Mthds. Engrg., 2, 5-32

9. A Gupta, G Karypis and V Kumar (1989), “Highly scalable parallel algorithms for
sparse Cholesky factorization on a hypercube,” Parallel Computing, 10, 287-298.

10. J.H. Kim and S.J. Kim (1999) “A Multifrontal Solver Combined with Graph Parti-
tioners”, AIAA Journal, Vol 38, No.8,pp.964-970.

11. O. A. Marques, “BLZpack User’s Guide,” http://www.nersc.gov/˜osni/#Software

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

56

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

