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Summary

The Meshless Local Petrov-Galerkin (MLPG) method that uses radial basis
functions, MLPG (RPG) in the development of trial functions, is applied to two nonlinear
beam-bending problems – the Elastica and the large deflections of a cantilever beam with
a tip load.  The present MLPG (RPG) method is formulated with an iterative procedure to
account for the nonlinearity.  The present method yields very accurate solutions for the
problems considered.

Introduction

Meshless Galerkin and Petrov-Galerkin formulations were presented for beam (C1)
problems using generalized moving least squares (MLS) interpolants in references 1 and
2. An alternative MLPG (RPG) method with radial basis functions (RBF) that is as
accurate as the MLPG method is presented in reference 3.   In this paper, the RPG
method is applied to two nonlinear beam-bending problems to evaluate its effectiveness.

Analysis

The Euler-Bernoulli equation of bending for an initially straight beam (Fig. 1) is [4]
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where M=M(x) is the bending moment, w is the deflection, q is the slope, and EI is the
flexural rigidity of the beam. In most engineering problems, (dw/dx) is small and its
square is small compared to unity and hence q =(dw/dx).  Eq. (1) then reduces to

MdxwdEI -=  )/( 22 . (2)
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Figure 1: Large deflections of a cantilever beam
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Equation (2) can be easily solved for various loading conditions.  When the slope
(dw/dx) is not small in comparison to unity then the moment M  itself is a nonlinear
function of q  and the problem is difficult to analyze in terms of w and x.  Instead, the
problem becomes tractable in terms of q   and M [5,6].  Differentiating Eq. (1) with
respect to s, one obtains

VdsdMdsdEI -=-=   )/(  )/( 22q , (3)

where V is the shear force.  With Eq. (3) as the starting point, the Elastica and the
nonlinear bending of a cantilever beam are analyzed using the MLPG (RPG) method.

The Elastica

Consider a column as shown in Figure 2.  When the magnitude of the load P is higher
than the Euler buckling load of the column, large deflections would occur and the
governing equation can be written using Eq. (3) as

)sin( )/(  / 22 qq EIPdsd -= , (4)

subjected to the boundary conditions q  =0 at s=L and (dq/ds)=0 at s=0.  Using a non-
dimensional coordinate x=(s/L), Eq. (4) can be written as

0  )sin(   / 22 =+ qlxq dd , (5)

where l = PL2/EI.  Eq. (5) represents a nonlinear problem because of the sin(q ) term.
An MLPG solution of Eq. (5) will be attempted by developing the weak form as

0  )]sin(   /[ 22 =⋅⋅+Ú
W
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where W is the domain under consideration ( 1    0 ££x ), and v is a weighting function.

The weak form is rewritten using a linearizing function f :

qqxqlxq /)sin(  where0,  ]   /[ 22 ==⋅⋅⋅⋅+Ú
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Figure 2: A column and the 9-node model
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Equation (7) is integrated by parts to set up the weak form (see references 1- 3),
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Next, the trial and test functions are assumed for q   and v, respectively.  The trial
functions for q  are assumed as
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where jj (x) is the shape function and qj  is the value of the slope at node j of an N-node
meshless model [1-3].  The shape functions jj(x )  are  derived from the RBF

)-( )(  jjj xxt xx=-= . (10)

Details of the development of the shape functions from the assumed RBF follow similar
procedures presented in reference 3.  Next, the test functions vi are chosen so that vi and
(dv/dx) i are zero at the ends of the domain GI   as in reference 2.  In this implementation,
the test functions with a=4 in Eq. 34 of reference 2 are used.

The trial and test functions are substituted into Eq. (8) to yield
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where i=1,2…N.  Note that the term ])/[( ivdd ⋅xq  evaluated on GI  is identically zero as
vi is zero on GI  and hence drops out of Eq. (12).  For an N-node model, Eq. (12) can be
written as 

}0{}]{[}]{[ =⋅+ dKdK Gl , (13)

where [K] and [KG] are NxN matrices formed using [k] and [kG] as
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The integrations involved in Eq. (14) are carried out numerically.

In the current implementation for the Elastica problem, the slope at the free end g
(i.e., value of q  at s=0) is assumed to be known.  For each given value of g, the non-
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dimensional critical load l is determined.  To start the iteration, the deflection curve is
assumed to be linear, i.e.,

gq ⋅= )/(  Lx jj . (16)

Utilizing these values of the slope, the function value of  f (f=sin(q )/q ) is evaluated at
the Gaussian points and the [KG] matrix is developed.  The eigenvalue problem in Eq.
(13) is then solved to obtain l.  The corresponding eigenvector {d} in terms of g yields
the values of  qj for the next iteration.  The iterative process is continued until the norm,
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for successive iterations q and q+1 is less than a prescribed tolerance.  In this paper, a
tolerance of 10 -10 is used.  The final values of the projected length and the maximum
deflection of the column can be evaluated using [5,6]
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In equations (18), the slope q  can be evaluated using the interpolation in Eq. (9).  At the

end of each iteration, the values of q j  are known, and hence (xL/L) and (wmax/L) can be
calculated by numerically integrating Eq. (19).

Large Deflections of a Cantilever Beam

Next, the large deflections of a cantilver beam subjected to a concentrated load at the
free end (Fig. 1) are considered.  The governing equation can be written using Eq. (3) as

)cos()/( = / 22 qq EIPdsd - , (19)

subjected to the boundary conditions q =0 at s=L and (dq/ds)=0 at s=0.   The weak form
of Eq. (19) can be set up as
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Assuming trial and test functions for q   as in Eq. (9) and v as previously mentioned leads
to

}{}]{[ FdK = , (21)

where [K] is a NxN matrix formed by using kij in Eq. (14) and
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The integrations involved in Eq. (22) are performed numerically, and cos(q ) is evaluated
at the Gaussian point using the trial functions interpolation of Eq. (9).

Results and Discussion

The results for the Elastica are presented first.  The large deflections of a cantilever
beam with a concentrated tip load are discussed next.  The results obtained with the
present MLPG (RPG) method are compared to the exact solutions from the literature.

The Elastica: The column is idealized by several meshless models; 3-, 5-, 9-, 17-,
and 33-node models.  These models have equal nodal spacing (Dx/L). A typical 9-node
model is shown in Figure 2.  The WSi is chosen to be (2Dx/L).   Table 1 presents the
convergence of the MLPG solution with model refinement for a large value of g, g =120º.
This value of g  is chosen to demonstrate the effectiveness of the current MLPG solution.
About 9 iterations are required for convergence for all the models considered.  The
critical load for g =120º obtained with the 33-node model  is about 1.2 percent above the
exact value.  The values of (P/Pcr), (xL/L), and (wmax/L) values for various values of g
from 0º to 176º (not shown here) are in excellent agreement with the exact solution.

Table 1: Convergence of the MLPG (RPG) solution: The Elastica, g=1200

Nodes lCR  at g=0 l l/ lCR xL/L wmax/L Iterations
3 2.531 4.516 1.784 0.211 0.792 9
5 2.509 4.645 1.851 0.141 0.803 9
9 2.499 4.687 1.876 0.127 0.803 10
17 2.493 4.693 1.882 0.124 0.803 9
33 2.491 4.693 1.884 0.123 0.803 9

Exact [7] 2.467 4.648 1.884 0.123 0.803

Cantilever Beam:  The large deflections of a cantilever beam with a concentrated tip
load are modeled with 9-, 17-, and 33-node models.  Figure 3 presents the (xL/L) and
(wmax/L) as a function of the non-dimensional load (PL2/EI).  The results obtained with
the 17-node model are shown in this figure as symbols.  Larger values of the non-
dimensional loads require higher number of iterations suggesting that the nonlinearity is
much more severe as the magnitude of the load increases.  The exact solution for this
problem is available (see references 5 and 6) in terms of elliptic integrals and is shown in
this figure as a continuous curve.  Excellent agreement is observed between the two sets
of results suggesting that the present MLPG (RPG) gives accurate solutions to nonlinear
beam-bending problems.

1355
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



Fig. 3: Comparison of MLPG and the exact solutions of a cantilever beam shown in Fig.1

Concluding Remarks

The large deflections problems of buckled column (the Elastica) and large deflection
of a cantilever beam with a concentrated tip load are considered.  The weak form of the
nonlinear governing differential equations is developed.  A Meshless Local Petrov-
Galerkin method is developed using the developed weak form.  Radial basis functions are
used to develop the trial functions of the primary variable, the slope of the deflection
curve.  An iterative procedure is developed to account for the nonlinearity in the problem.
The results obtained by this method are compared to the exact solutions from the
literature.  The MLPG (RPG) method yields very accurate solutions.
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