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Introduction 

The excellent mechanical properties exhibited by CNTs (Young’s modulus are in the 
range of 0.32 to 1.47 TPa [1,2,3] and failure strength is of the order of 150 GPa  [3]) and 
combined with their extremely high strength to weight ratio make them potential 
candidates as reinforcing fibers in super strong composites.  A critical issue in the 
successful application of these composites is the mechanical characteristics of fiber-
matrix interfaces. Interfaces are narrow regions separating well-defined domains and are 
primarily responsible for a range of key properties including stiffness, strength, and 
fracture behavior  [4]. The role of interface is very vital to the stress transfer between the 
fiber and matrix; and the interfaces influence mechanical performance and fracture 
behavior of the composites under various loading conditions [5].  

In the past interfaces have been modeled as a narrow region of continuum with 
graded properties, or as an infinitely thin surface separated by springs, and cohesive 
zones with specific traction-separation relations.  Chandra et al, [6,7,8] simulated the 
interfacial mechanical behavior of thin-slice push-out tests incorporating the spring layer 
model and fracture mechanics approach. In recent years, interfaces are modeled using 
cohesive zone approaches, which cannot only model interface-bonding behavior, but also 
its separation without use of any ad-hoc criterions. CZM was originally proposed by 
Barenblatt [9] as a possible alternative to the concept of fracture mechanics in perfectly 
brittle materials. In a general CZM the traction-separation relations for the interfaces are 
such that with increasing interfacial separation, the traction across the interface reaches a 
maximum, then decreases and eventually vanishes, permitting a complete decohesion. 
The shape of traction-separation equations, the maximum traction, σmax , and 
corresponding δmax ), and the value of δ sep   affects the macroscopic mechanical response 

of a material system.. Usually the T − δ  relation is expressed in the form of Tn vs. un/δ. 
The normalizing (un/δ) is necessitated by the requirement that when traction is obtained 
as a function of cohesive strength, the multiplier has to be a non-dimensional quantity. It 
should be noted that δ  varies anywhere from 10 10− m to 10 5− m and σmax ranges from 
MPa to GPa.  
In this paper  we model 
CNT based composite 
material system in a 
multiscale set up, where 
we use the nanoscopic 
material properties 
obtained from MD 
simulations in to a 
continuum model. In 
nano-composites 
interface plays a crucial 
role, hence nanoscopic 
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Fig.1  Traction-displacement curve (a) Trapezoidal 
model for shear traction (b) bilinear model for normal 
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properties of interface are incorporated in the continuum model through CZM.  The 
continuum model we use in our simulation is FEM. Both CNT and matrix material are 
modeled using continuum element, where the CNT elements are treated as elastic, while 
matrix material is treated as elasto-plastic material.  In order to predict accurate behavior 
of the composites appropriate FE mesh has to be adopted. The nanoscopic material 
properties of the interface  sometimes determine the mesh size of elements that need to be 
adopted near the interface. As reported in the literature  [10] the size of the cohesive zone 
element should be of the order of characteristic distance parameter. By adopting such a 
mesh density, to model a composite of few mm sizes, we may need elements in several 
thousands. Here we explore the optimum size needed for cohesive zone elements so that 
we can use lesser elements to model the composite. 
 
Cohesive Zone Model for Interfaces 

The interfacial constitutive relations for the interfaces is approximated by a 
trapezoidal model of Tevergaard [11] for tangential separation and bilinear model for 
normal separation This traction-displacement relations are obtained with out any potential 
and the shape of the traction displacement is trapezoidal as shown in the figure 1. 

max ,( )t max1 max ,( )n max1max1
max1T ( max2) ;  Tt max max1 n 1max ,( max1)1 nmax ,( ) 1t max2 max1 max

σ ⋅δ δ ≤ δ σ ⋅ δ δ ≤ δδ  δ = σ δ ≤ δ ≤ δ = σ −δ  ⋅ ⋅ δ δ > δσ −δ ⋅ ⋅δ δ > δ δ − δδ − δ

       (1)           

Interface Properties from MD Simulation 
Interface properties were obtained by simulating fiber pullout experiment using MD 

simulations. Here a (10,10) nanotube of 120
o
A  length is considered in the investigation. 

Hydrocarbon chains are attached to the nanotubes at randomly selected positions through 
the length of the nanotube. Tensile stresses are applied by displacing one end of the 
nanotube while fixing the corner atom of hydrocarbon chain as shown in figure 2. 
Displacements of 0.05 A are applied every 1000 time steps with a step size of 0.2 fs. 
Temperature is maintained at 300K. Stresses strains and reactions of fixed atoms are 
monitored. A typical Reaction force vs displacement plot for fixed atoms is shown in 
figure 3. There is an initial flat region which corresponds to stretching of hydrocarbon 
chains. This is followed by a rise and drop which denote bonding and de-bonding, and a 
final detachment of the tube. 
The most interesting aspect of interface behavior is the bonding and de-bonding of 
nanotube interfaces. The sliding of hydrocarbon chains along the nanotube before failure 

Fig.2  Schematic of  (10,10) CNT with butane hydrocarbon chemical attachments. 
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Fig 3. Schematic of force-displacement behavior of 
interface obtained from MD calculations. This is 
the basis for traction-displacement plot for 
cohesive zone model 

is responsible for this behavior. Using 
such force-displacement data from 
simulation, traction displacement curves 
are obtained in the format of CZM 
model indicated by figure 1 and Eq. 1. 
CZM based shear lag model 
In this section we propose an analytical 
model based on shear lag model concept 
originally proposed by Cox [12]  and 
Kelly [13]. In most of the shear lag 
models the fiber and matrix at the 
interface is considered to be perfectly 
bonded. But in reality it is difficult to 
achieve a near perfect bonding between 
the fiber and matrix. The interface starts 
separating with applied loading. In the 
present analytical model we incorporate 
the interface separation by including 
cohesive zone model. For a composite 
where the fibers are of uniform length 
and diameter and fibers are aligned in a 
matrix, a unit cell as shown in the fig. 4(b) is 
identified for the analytical and numerical 
analysis. Let the tensile strain on composite 
be ε  in the z direction. Let f f fE ,  and σ τ  be 
the Young’s modulus, longitudinal stress 
and shear stress in the fiber, sT  be the 
interfacial shear traction, u ,v be the axial 
displacement in the fiber and surrounding 
matrix respectively. The difference in axial 
displacements, f mu v+ −−  is the displacement jump between the interface between fiber and 
matrix inducing the interfacial shear traction sT . The longitudinal and shear stress in the 
fiber is given by 

( ) ( ) ( )
o

f of
f f f

f
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E E d
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The average stress in the fiber can be calculated as  
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Fig. 4. Shear lag model for aligned short 
fiber composites.  
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Defining the average stress in matrix as E , where E  is the Young's modulus 
of the matrix and V  is the volume fraction of fiber in the composite then the average

stress in composite is given by 

σ ε

σ

=

c f m f f c(1 V ) V . If E  is the Young's modulusσ σ= − +
 

of the composite, then  we can write c cEσ ε= .     
FE model 

To evaluate the mechanical behavior 
of composites, the unit cell is modeled as 
an axi-symmetric problem. The CNT is 
modeled as a hollow tube with a length of 

200 
o
A , outer radius of 6.98 

o
A  and 

thickness of 0.4 
o
A . The CNT tube was 

discretized with 1596 axisymmetric 4-
node elements and 11379 axisymmetric 4-
node elements to model the matrix. 
Duplicate nodes are created at the 
interface on the fiber and matrix sides. 399 
axisymmetric cohesive elements with each 
having 4 nodes and zero thickness in the 
direction normal to the interface are used 
to model the interface behavior. 
Symmetric boundary conditions were used 

along the axis of symmetry. The 
cohesive element model is input as a 
user-defined element subroutine 
UEL into general-purpose 
commercial code ABAQUS to carry 
out the analysis. The model was 
simulated by applying tensile 
displacement on the top edge of unit 
model. Cohesive zone properties 
were applied to interface elements 
with Tmax varying between 50 to 
5000 MPa. Interface bonding along 
the curved cap of CNT is ignored by 
reducing the interface strength.   
 
Results and discussions  
Variation of Longitudinal stress and 
shear stress in the fiber: 
Figure 6 shows the variation of 
longitudinal stress and figure 7 
shows the variation of shear stress in 
the fiber for interface strength Tmax= 
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Fig. 7  Variation on Shear stress in the fiber 
near the interface at different applied strain 
levels in the composite, for Tmax=5000MPa. 
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Fig. 6  Variation on longitudinal stress in the 
fiber at different applied strain levels in the 
composite, for Tmax=5000Mpa. 
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5000 MPa. Plots with solid lines are obtained from FEM simulations and plots with 
dashed lines are obtained from analytical solution (Eq. 2). There is a good comparison for 
longitudinal stresses between numerical model and analytical model for interface 
strengths of 5000 as shown in figure 6.  The shear stress distribution from the two models 
deviate from one another. However the maximum intensity of shear stress predicted by 
the two models compare with in a close range, for e.g. the maximum shear stress 
predicted for the strain level of 0.0022 is 68 MPa and 74 MPa by numerical and 
analytical models respectively  for 
the interface strength of 5000 MPa.  
 
Effect of interface strength on 
stiffness and strength: 
It has been observed in the 
literature that composite strength 
and stiffness increase with matrix 
stiffness and volume fraction of 
fiber. Table 1 and the stress strain 
curves shown in the figures 8 and 9 
show that that the strength and 
stiffness also increases with 
interface strength. For example for 
Epoxy matrix (E=3.5 GPa) the 
stiffness in the elastic range 
increases by a factor 11 when the 
interface strength is 5000 MPa  and 
volume fraction is 0.05%, on the 
other hand with weak interface 
strength of 50 MPa the stiffness 
increases by a factor 0.5. In 
addition to stiffness the strength 
also increases considerably. For 
example for composite with 
volume fraction of 0.05%, the yield 
strength (when matrix reaches a 
yield strain of 0.0216) are of the 
order 107, 340, and 809 MPA for 
interface strength of 50, 500 and 
5000 MPa respectively.  
 
Effect of interface strength on Hardening modulus: 
Higher interface strength also tends to increase hardening modulus of composites. Table 
3 below shows the different range of hardening modulus attained with different interface 
strength. In case of conventional composite consisting of E-glass (E=76 GPA) and Epoxy 
matrix there is marginal increase of hardening modulus. This is because the stiffness of 
the fiber is very low. In such cases the matrix material governs the mechanical behavior 
once composite reaches its yield value. In case of CNT based composites with low 
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Fig. 9 Stress strain curve for CNT based-
composite for different interface strength and 
volume fraction of 0.05 
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interface strength there 
is no considerable 
increase in hardening 
modulus. Even though 
the fiber is considerably 
stronger, matrix 
controls the composite 
behavior. On the other 
hand with stronger 
interface there is 
considerable increase in 
hardening modulus as 
shown in table 3 and 
Figures 13,14 and 15. 
In case of interface 
strength of 5000 MPa, 
with 0.05 % volume 
fraction of fiber, the 
hardening modulus is 90% of that of elastic stiffness. With stronger interface and stronger 
fiber stiffness, mechanical behavior is controlled by fiber where as in composites with 
low interface strength or low fiber stiffness matrix governs the composite behavior. 
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Table 1:  Variation of Young’s modulus and hardening 
modulus of the composite with matrix young’s modulus, 
volume fraction and interface strength 

Volume
fraction
of fiber

0.02

0.03

0.05

CNT/Epoxy Composite E glass/Epoxy Composite

Ec(elastic)/Em Ec(elastic)/EmEc(Hardening)/Em Ec(Hardening)/Em

1.18 0.2 1.11 0.16

Interface
strength

Tmax
(inM Pa)

50

500

5000

50

500

5000

50

500

5000

2.46 1.49 1.3 0.34

4.98 4.02 1.38 0.42

1.28 0.32 1.17 0.22

3.17 2.22 1.45 0.61

6.99 6.02 1.57 0.74

1.46 0.53 1.29 0.35

4.61 3.68 1.75 0.93

10.96 10.02 1.95 1.23
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