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Summary 

In this study, the in-plane anisotropic elastic-viscoplasic behavior of plain-woven 
glass fiber/epoxy composites is analyzed by using a homogenization theory. To this end, 
assuming the in-phase and out-of-phase stacks of plain fabrics, the homogenization 
theory of nonlinear time-dependent composites is applied to the analysis. Moreover, it is 
pointed out that the plain-woven composites with in-phase and out-of-phase stacks of 
plain fabrics have point-symmetric internal structure. The point-symmetry of internal 
structure is then utilized to reduce the domain of analysis, leading to significant 
computational efficiency. As a result of analysis, it is shown that the present analysis is 
successful in reproducing the nonlinear behavior of plain-woven GFRP composites 
subjected to off-axial load as well as the linear behavior of the composites under axial 
load. It is also shown that the way of stacking of plain fabrics has influence on the elastic-
viscoplastic behavior of plain-woven GFRP composites. 

Introduction 

Plain-woven composites are now important engineering materials because of their 
high specific strength, high specific stiffness, and so on. The plain-woven composites 
generally exhibit marked nonlinear behavior due to the inelasticity of matrix materials 
especially when the composites are subjected to off-axial load, resulting in the 
considerable in-plane anisotropy. In practical use of plain-woven composites, the 
composites can be subjected to not only axial load but also off-axial load. It is therefore 
of significance to analyze the off-axial nonlinear behavior of plain-woven composites. 

Complex internal structures of plain-woven composites, however, cause the difficulty 
with analyzing the deformation behavior of the composites. The homogenization theory 
based on unit cell problems [e.g. 1] is one of the most promising theories for the analysis 
of plain-woven composites because the FEM based analysis generally employed in the 
theory enables us to take into account the complex microscopic structures of composites. 
The theory therefore has already been applied to analyzing the nonlinear behavior of 
plain-woven composites with the microscopic damages in fiber bundles under axial load 
[2-4]. But the off-axial nonlinear behavior given rise to by the inelastic deformation of 
matrix materials has not been considered. 

The present authors [5,6] constructed the homogenization theory of nonlinear time-
dependent composites. The theory was then applied to analyzing the elastic-viscoplastic 
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behavior of long fiber-reinforced laminates, and succeeded in predicting experimental 
results accurately [7]. This successful application was owing to the features of the theory: 
The theory analyzes not only the macroscopic time-dependent behavior of composites but 
also the distributions of microscopic stress and strain rates in composites. This unique 
advantage of the theory can make it possible to analyze the off-axial nonlinear behavior 
of plain-woven composites. 

The present authors [8,9] further showed the following: If the internal structure of a 
composite has point-symmetry, the perturbed velocity field in the composite also has 
point-symmetry. Using the point-symmetry of perturbed velocity field as a boundary 
condition of unit cell problems, we are able to reduce the domain of analysis, leading to 
considerable computational efficiency. In general, the internal structures of plain-woven 
composites assumed in the homogenization analysis have the point-symmetry as well as 
the Y-periodicity, which will be discussed in the section after next. One can therefore 
introduce the point-symmetric boundary condition into the homogenization analysis of 
plain-woven composites so that the domain of analysis can be reduced. But, so far, whole 
unit cells have been taken as the domain of analysis for the use of the Y-periodic 
boundary condition of perturbed velocity [2-4]. 

In this study, we analyze the in-plane elastic-viscoplastic deformation of plain-woven 
GFRP composites using the homogenization theory of nonlinear time-dependent 
composites. It is thus shown that the analysis reproduces the in-plane anisotropic elastic-
viscoplastic behavior of plain-woven GFRP composites. Moreover, the point-symmetric 
internal structure of plain-woven composites is utilized to reduce the domain of analysis, 
resulting in considerable computational efficiency. 

Homogenization Theory 

In this section, we briefly review the homogenization theory of nonlinear time-
dependent composites. Let us consider that a composite with periodic internal structure is 
subjected to macroscopically uniform load and deforms infinitesimally. We then take the 
unit cell Y of periodic composite and the Cartesian coordinates iy  ( 1, 2, 3)i =  for Y. Each 
constituent in Y is assumed to exhibit elastic-viscoplastic behavior characterized as 

( )ij ijkl kl klcσ ε β= −&& , (1) 

where ijσ&  and klε&  indicate microscopic stress and strain rates, respectively, ijklc  denotes 
elastic stiffness, and klβ  represents a viscoplastic function and vanishes if elastic. 

Then, in accordance with our previous papers [5,6], we can derive the evolution 
equation of microscopic stress ijσ  and the relation between macroscopic stress rate ijΣ& 
and strain rate klE&  as follows: 

, ,( ) ( )kl
ij ijpq pk ql p q kl ijkl kl k lc E cσ δ δ χ β ϕ= + − −&& , (2) 

, ,( ) ( )kl
ij ijpq pk ql p q kl ijkl kl k lc E cΣ δ δ χ β ϕ= + − −&& , (3) 
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where ,( ) i  stands for the differentiation with respect to iy , ijδ  signifies Kronecker’s 
delta, and 1# | | #YY dY−= ∫ . Here, | |Y  denotes the volume of Y. Moreover, kl

iχ  and iϕ  
in Eqs. (2) and (3) indicate the characteristic functions determined by solving the 
following boundary value problems 

, , ,
kl

ijpq p q i j ijkl i jY Y
c dY c dYχ = −∫ ∫v v , (4) 

, , ,ijpq p q i j ijkl kl i jY Y
c dY c dYϕ β=∫ ∫v v , (5) 

where iv  indicates any field of perturbed velocity satisfying the Y-periodicity.  In 
general, the above boundary value problems (4) and (5) can be solved using FEM by 
imposing the Y-periodicity of kl

iχ  and iϕ .  

Basic Cell and Boundary Condition 

In the analysis based on the homogenization theory, the way of stacking of plain 
fabrics in plain-woven composites is generally assumed as shown in Fig. 1 [2-4]. In Fig. 
1(a), all the plain fabrics are stacked with no offset. On the other hand, in Fig. 1(b), the 
plain fabrics are stacked with the phase shift π  in the 1y - and 3y -directions. Thus, from 
now forth, the stacking patterns of plain fabrics illustrated in Fig. 1(a) and (b) will be 
referred to as “in-phase stacking” and “out-of-phase stacking”, respectively [2]. 

Fig. 1. Two kinds of stacking patterns of plain fabrics in plain-woven composites; 
(a) in-phase stacking, (b) out-of-phase stacking. 

Basic cell A

Unit cell Y Unit cell Y

Basic cell A

Fig. 2. Unit cell Y (dashed lines) and basic cell A (solid lines) of plain-woven 
composites; (a) in-phase stacking, (b) out-of-phase stacking. 
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For the plain-woven composites with the above-mentioned stacking patterns of plain 
fabrics, unit cells Y can be taken as shown in Fig. 2(a) and (b), respectively. As stated in 
the Introduction, so far, the unit cells in Fig. 2 have been taken as the domain of analysis 
[2-4]. But, in the present study, we pay attention to a part of unit cells, which is indicated 
by the solid lines in Fig. 2(a) and (b), and will be referred to as a basic cell A  hereafter. It 
is noted that both the composites have the same basic cell. 

Then, a close look at Fig. 2 tells us the following: The composite with in-phase 
stacking has the point-symmetric internal structure with respect to the centers of lateral 
facets of A , which are denoted by the small open circles in Fig. 2(a), and has the Y-
periodicity in the stacking direction. On the other hand, the composite with out-of-phase 
stacking has the point-symmetric internal structure with respect to the centers of top and 
bottom facets as well as lateral facets of A , which are also denoted by the small open 
circles in Fig. 2(b). Thus, when the plain-woven composites are subjected to 
macroscopically uniform load, the perturbed velocity in the composites distributes point-
symmetrically with respect to the open circles indicated in Fig. 2. Employing this point-
symmetry of perturbed velocity field as a boundary condition of the boundary value 
problems mentioned previous section, the basic cell A  instead of the unit cell Y can be 
taken as the domain of analysis [8,9], leading considerable computational efficiency.  

Analysis of In-Plane Elastic-Viscoplastic Behavior of Plain-Woven GFRP Composites 

In the present analysis, the plain-woven glass fiber/epoxy composites with the in-
phase and the out-of-phase stacking patterns of plain fabrics shown in Fig. 1 are 
considered. Then, the basic cell illustrated in Fig. 3 is taken as the domain of analysis for 
both the composites, and discretized into 8-node isoparametric elements (1624 elements, 
1995 nodes). 

Fiber bundles are regarded as elastic materials. The elastic constants of fiber bundles 
are calculated by using the homogenization theory on the assumption that the fiber 
bundles are unidirectional glass fiber/epoxy composites which have transversely 
hexagonal fiber array and 65% fiber volume fraction. On the other hand, the epoxy 
matrix is regarded as an elastic-viscoplastic material which obeys the following 
constitutive equation 

3y

1y

2y

ζ

ξ

θ

Fig. 3. Basic cell of plain-woven GFRP composites and finite element mesh (1624 
elements, 1995 nodes); (a) full view of basic cell, (b) fiber bundles in basic cell. 
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where mE , mν  and n  are material constants, ( )pg ε  denotes a hardening function 
depending on accumulated viscoplastic strain 1/ 2[(2 / 3) ]p

ij ij dtε β β= ∫ , 0
pε&  indicates a 

reference strain rate, ijs  stands for the deviatoric part of ijσ , and 1/ 2[(3/ 2) ]e ij ijs sσ = . The 
material constants and function employed in the present analysis are listed in Table 1. 

The composites are subjected to in-plane uniaxial elongation at a constant strain rate. 
The loading condition is as follows: 

5 1
22 2 210 s , 0, 0Eζζ ξξ ξζ ξ ζΣ Σ Σ Σ Σ− −= = = = = =& & & & & & , (7) 

where the subscripts ξ  and ζ  denote the axes which make an angle θ  with the 1y - and 
3y -axes, respectively [Fig. 3(a)]. Four loading directions, i.e., 0 ,15 , 30 , 45θ = ° ° ° ° , are 

considered in the present analysis. 

The macroscopic stress-strain relations of plain-woven GFRP composites are shown 
in Fig. 4. As seen from the figure, in the case of 0θ = ° , the composites deform almost 
linearly. By contrast, the composites subjected to the off-axial load, i.e., in the case of 

15 , 30 , 45θ = ° ° ° , exhibit considerable nonlinearity due to the viscoplasticity of epoxy 
matrix. Flow stress decreases according as θ  increases, and becomes the lowest at 

45θ = ° . We can therefore say that the plain-woven GFRP composites have marked in-
plane elastic-viscoplastic anisotropy, which is observed in experimental results. Next, let 
us compare the results of in-phase stacking with those of out-of-phase stacking. As 
shown in Fig. 4, both the results have the difference about 4~10%, meaning that the 
offset stacking of plain fabrics can affect the macroscopic behavior of plain-woven GFRP 
composites. 
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Table. 1.  Material constants.
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