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Summary 

The minimum volume design of elastic plastic frames subjected to a combination of 
fixed and cyclic loads is studied. The optimal design problem is formulated in such a way 
that the structure is able to elastically adapt to the loads in serviceability conditions and to 
plastically adapt to very high intensity loads. Furthermore, suitable limits on the plastic 
deformations occurring at the limit state of the plastic shakedown are given as well as a 
chosen measure of the plastic deformation related to the elastic shakedown is suitably 
bounded. A suitable solution procedure is utilized. 

Introduction 

The continuous progress in technology, the upgrading regarding the computational 
techniques and the related software incites the designers to require more and more 
efficiency to the structures. Actually, in the last decades the researchers addressed many 
efforts to structural optimization, providing many original formulations of the optimal 
design as well as several interesting contributions related to the computational 
procedures. The different formulations of the search problem substantially depend on the 
special limiting criterion imposed on the structure behaviour. So, the elastic optimal 
design, the elastic shakedown optimal design, the plastic shakedown optimal design, the 
standard limit design and the multicriteria optimal design (see, e.g., [1-5]) have been 
developed. Whatever the special formulation is utilized, it is very useful to know if the 
optimal structure, at the prescribed limit state, fulfils special limits on its ductility 
behaviour. Actually, in the above referred formulations limits on the structure ductility 
have been disregarded. Some contributions on this topic have been proposed for elastic 
shakedown design as well as for standard limit design (see, e.g., [6,7]). The present paper 
is devoted to propose a formulation of the optimal design of elastic perfectly plastic 
frames subjected to a combination of fixed and cyclic loads, simultaneously according to 
a plastic shakedown criterion and to an elastic shakedown one, each related to suitably 
chosen load multipliers, and with constraints on the plastic strains related to the limit 
state of plastic shakedown as well as on some suitably chosen measure of the plastic 
deformations related to the elastic shakedown. 

Structural model and steady-state behaviour 

Let us consider a frame constituted by n elastic perfectly plastic elements subjected to 
quasi-statically variable loads within the interval ( )ftt0 ≤≤ , being t a monotonically 
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increasing variable aimed at specifying the loading sequence. Let us assume that each 
beam element is constituted by one or more purely elastic beam portions at the ends of 
which the rigid plastic hinges are located. In the hypothesis of small displacements and 
strains, the following relationships hold, ( )ft,0t∈∀ : 
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with  and  boundary cross section displacement vectors of the beam elements,  
and  compatibility matrices, u structure node displacement vector, H compatibility 
matrix related with the rigid motion of the elements, q  total deformation, 
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internal elastic stiffness matrix of the elements constrained against any rigid motion by 
clamping the initial cross sections,  generalized stress vector evaluated at the element 
free cross sections, q  and  deformation vectors related to the actions present along 
the beams and to the plastic strains p evaluated at the plastic hinges, respectively,  
generalized stress vector evaluated at the element initial cross sections, f  external loads 
applied on the beams, F  external loads applied on the structure nodes,  and H  
compatibility matrices analogous to H, P generalized stress vector evaluated at the plastic 
hinge sections,  yield function vector, N matrix of the unit external normals to the yield 
surface, R plastic resistance vector and λ  plastic multiplier vector. 
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By means of the usual mathematics, equation set (1)-(7) can be rewritten as follows: 
 

FBpKu =− , (8) 
~ ∗+−= PDpuBP  (9) 
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where 0
e

0
~ CDCK =  is the external stiffness matrix, ( )120 HCCC −= , pe

0
~ HDCB =  

the well-known pseudo-force matrix and ∗∗ + 2
e

0
∗+= 1

~ˆ HCFF qDCf  the equivalent nodal 
force vector. Furthermore, pep~ HDHD =

∗∗ = p
 is the block diagonal stiffness matrix related to 

the plastic hinge sections and ∗∗ − 2
ep~~ qDHfHP  the generalized stress vector related 

to the same sections but due to mechanical and kinematical actions on the beam element. 

~~

Supposing now that the load is defined as a combination of fixed mechanical load F  
and cyclic mechanical and/or kinematical load  and that the cyclic load identifies with 
a convex polygonal shaped loading path with vertices corresponding to a set of an even 
number b of mutually independent load vectors, 

0

cF

( ) { }b,...,2,1bIi,ci ≡∈F  and assuming 
that the cyclic load is a perfect one, i.e. for each basic load condition an opposite one 
exists in the load space, the steady-state response of the structure possesses the same 
periodicity features as the cyclic loads and it is independent of the initial conditions and 
of the chosen loading path. Moreover, for each cycle of the loading history, the steady-
state response just depends on the sequence of the b amplified basic load conditions 

, being  and cic00i FFF ξ+ξ= 00 >ξ 0c >ξ  the load multipliers. As a consequence, the 
steady-state structural response in the cycle can be obtained by an analysis effected just 
for the b basic load conditions. If vector  represents the plastic activation intensities 
related to the ith basic load condition, such as 

iY

iNYip =  is the plastic strain due to the ith 
basic load, and affecting the loads  by a further load multiplier iF 0>ξ , the equations 
governing the elastic plastic steady-state response of the structure read: 
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where ( )NDBKBNS −−= −1~~  is a positive semidefinite symmetric matrix. If eqs. (12-14) 
admit an unbounded solution Y , then instantaneous collapse occurs; if they admit a 
finite no vanishing solution , then the structure exhibits an elastic plastic behavior, 
finally, if they admit a vanishing solution , then the full structure is elastic. Even in 
this last case an unknown amount of plastic strain related to the elastic shakedown can be 
present in the structure. An assessment over the amount of such plastic strain can be 

i
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provided by means of the so-called bounding theorems (see, e.g., [8]). For the purposes 
of the present paper a suitable measure of the plastic deformation, related to the elastic 
shakedown, will be bounded as indicated hereafter: 

 

S
2

eS
2

S ~
2
1b QQ Φ
ω

≤  (15) 

 

where  is the quantity to be bounded, Sb 0>ω  the perturbation multiplier and  the 
self stress field related to the perturbed yield domain. 

S
2Q

Minimum volume design formulation 

Making reference to the structure previously described, the minimum volume design 
formulation, according simultaneously to an elastic shakedown criterion and to a plastic 
shakedown one, and taking into account suitable limits on the plastic deformations at the 
limit state of the plastic shakedown as well as on the plastic strain related to the elastic 
shakedown, reads as follows: 
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where d  are the minimal values of the design variables d,  the self stress field at the 

limit state of the plastic shakedown, 

F
2Q

R̂  the perturbation vector,  the perturbed yield 
domain. Eqs. (16c) represent the elastic plastic steady-state response of the structure 
subjected just to the action of the purely cyclic load amplified by ; by eqs. (16d) 
given limits are imposed to suitable measures (depending on matrices M ) of the plastic 

S
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F
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deformation at the limit state of plastic shakedown; eqs. (16e,f) represent the limit 
conditions for plastic shakedown (for fixed loads amplified by ), while eqs. (16g,h) 
represent the limit conditions for elastic shakedown related to a perturbed yield function, 
being  and ξξ  the fixed and cyclic load multipliers, respectively. With eqs. (16i,j), a 
given limit to the bound on a chosen measure of the plastic deformation related to the 
elastic shakedown is imposed. Eqs. (16c,e,g) must be satisfied 
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The solution to problem (16) can be pursued by operating parametrically,  being 
the parameter [9], and utilizing suitable iterative techniques [3]. Therefore, at first the 
following problem must be solved, denoting with 

ω

ω  the fixed value parameter: 
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holding eqs. (17c,e,g) . The optimal value of ( )bIi∈∀ ω  can be obtained by solving: 
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Solving the above sequence of minimum problems (17, 18) a very good design can 
be determined depending on the accuracy in performing the sensitivity analysis of the 
quantities appearing in problem (17) as function of ω . 

Conclusions 

The minimum volume design of elastic perfectly plastic frames subjected to a 
combination of fixed and cyclic loads has been studied. The search problem has been 
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formulated so that the optimal structure is able to elastically adapt to the loads in 
serviceability conditions and to prevent the incremental/instantaneous collapse for very 
high intensity loads. Furthermore, suitable limits on the plastic deformations occurring at 
the limit state of the plastic shakedown have been imposed as well as a chosen measure 
of the plastic deformation related to the elastic shakedown has been suitably bounded. 

The proposed minimum problem is a strongly non linear mathematical programming 
one and, as a consequence, special emphasis has been devoted in the present paper to the 
proposing of a suitable solution procedure. In the computational stage several 
applications devoted to steel frames have been effected, choosing different kinematical 
quantities to introduce within the constraints of the problem in order to control the plastic 
deformations related to the structure behavior at the limit states of elastic and plastic 
shakedown. In all the examined cases, the obtained results, have been encouraging and 
characterized by good coherence, requiring in addition a not very high computational 
effort. 
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