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Summary 
In this study, microscopic buckling of elastic square honeycombs subject to in-plane 

compression is analyzed using a two-scale theory of the up-dated Lagrangian type. The 
theory allows us to analyze microscopic bifurcation and post-bifurcation behavior of 
periodic cellular solids. Cell aggregates are taken to be periodic units so that we can 
discuss the dependence of buckling stress on periodic length. Then, it is shown that 
microscopic buckling occurs at a lower compressive load as periodic length increases, 
and that long-wave buckling occurs just after the onset of macroscopic instability if the 
periodic length is sufficiently long. It is further shown that the macroscopic instability is 
of the shear type, leading to a simple formula to evaluate the lowest in-plane buckling 
stress of elastic square honeycombs. 

Introduction 
When cellular solids are subject to compression, buckling may occur in cell walls and 

edges. This instability is called microscopic buckling. Such microscopic instability may 
cause macroscopic instability. In analyzing the microscopic instability of periodic cellular 
solids, one must note the following feature: The eigenmode of microscopic bifurcation in 
periodic cellular solids is represented by the Bloch wave and thus can have a longer 
periodic length than unit cells; consequently, if the periodic length is infinite, the onset of 
microscopic bifurcation can be identified with the start of macroscopic instability [1]. 
The above mentioned feature is important and has brought about interest in analyzing the 
periodic length-dependent, or long-wave, microscopic bifurcation in cellular solids [2-5]. 

Square honeycombs made of ceramics are now used worldwide for catalytic 
converters. Metallic square honeycombs are also being developed as one of the ordered 
metallic cellular solids [6]. Square honeycombs are thus one of the important cellular 
solids, and their in-plane elastic properties and buckling stresses are now available in the 
literature [7]. Long-wave bifurcation, however, has not been evaluated for the in-plane 
buckling of square honeycombs. They are, therefore, worth examining for possible long-
wave in-plane buckling. 

In this study, long-wave bifurcation will be demonstrated for elastic square 
honeycombs subject to in-plane uniaxial compression. To this end, their in-plane 
buckling and post-buckling behavior will be analyzed using the two-scale theory and the 
bifurcation condition developed by the present authors [5,8]. Several cell-aggregates 
consisting of different numbers of cells will be assumed as periodic units. The results of 
analysis will be discussed to show that long-wave bifurcation occurs after the onset of 
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macroscopic instability. Then, by utilizing the macroscopic instability condition, a simple 
formula will be derived to evaluate the lowest in-plane buckling stress of elastic square 
honeycombs. 

Theory 
First, we briefly describe the updated Lagrangian type two-scale theory developed by 

Ohno et al. [8] and Okumura et al. [5]. 

If an infinite, periodic body B  with a unit cell Y is subject to macroscopically 
uniform stress or strain, the microscopic deformation of B  can initially satisfy the so-
called Y-periodicity, in which Y is the unit of periodicity. However, if microscopic 
bifurcation occurs, the Y-periodicity may break down, resulting in a larger periodic unit 
than Y. To represent such an enlarged periodic unit, we consider a cell aggregate 
consisting of k unit cells, kY, and we take Cartesian coordinates ix  ( 1, 2, 3i = ) for kY in 
the current configuration of B . Hereafter, ,( ) i  will indicate the differentiation with 
respect to ix , and ( )⋅  will designate the material derivative with respect to time t. 
Moreover, the summation convention will be used, unless otherwise stated. 

If the kY-periodicity of microscopic deformation prevails in B , velocity iu& can be 
divided into macroscopic part 0

iu& and microscopic, kY-periodic part *
iu&, i.e., 0 *

i i iu u u= +& & &. 
Then, defining strain rate to be , ,( ) / 2ij i j j iu uε = +& & & , we have  

0 *
ij ij ijε ε ε= +& & &, (1) 

where 0 0 0
, ,( ) / 2ij i j j iu uε = +& & &  and * * *

, ,( ) / 2ij i j j iu uε = +& & & . It is noted that 0
,i ju&  and 0

ijε& are uniform 
in B , whereas *

,i ju&  and *
ijε& are kY-periodic. We assume that each constituent of B  has a 

hypoelastic constitutive relation 
,ji ijkl k ll uπ =& & , (2) 

where jiπ&  denotes the nominal stress rate in the updated Lagrangian formulation, and ijkll  
represents microscopic stiffness and satisfies ijkl klijl l= . It may be convenient to assume 
alternatively 

ij ijkl kls c ε= && , (3) 
where ijs&indicates Truesdell’s stress rate, and ijkl jikl ijlk klijc c c c= = = . The two stress rates 
are related with the material time derivative of Cauchy’s stress ijσ  as follows:  

, , ,ji ij i k jk ij ij k k ik j ks u u uπ σ σ σ σ= + = + −& & & & & & . (4) 
Substituting Eqs. (2) and (3) into Eq. (4), we see that ijkl ijkl ik jll c δ σ= + . Here and from 
now on, ijδ will indicate Kronecker’s delta. 

We introduce a volume average in kY in the current configuration of B , 
1# | | #

kY
kY dY−〈 〉 = ∫ ,  (5) 

where | |kY  is the current volume of kY. Then, using 0 *
i i iu u u= +& & & and the kY-periodicity 

of *
iu&, we can show that 0

, ,i j i ju u〈 〉 =& &  and 0
ij ijε ε〈 〉 =& & . Moreover, we can demonstrate that 

the microscopic relation (4) is transformed to the same form of macroscopic relation  
0 0 0
, , ,ji ij i k jk ij ij k k ik j kS u u uΠ Σ Σ Σ Σ= + = + −&& && & & , (6) 

where ji jiΠ π= 〈 〉& & , ij ijS s= 〈 〉& & , and ij ijΣ σ= 〈 〉 . 
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Transforming an equilibrium equation , 0ji jπ =&  into a weak form, and using the kY-
peridicity of jiπ&  and *

iu&, we can show a virtual work equation 
0

, ,ji i j ji i ju uπ δ Π δ〈 〉 = && & & , (7) 
where iuδ & is any variation of iu&, and 0

, ,i j i ju uδ δ= 〈 〉& & . It is noted that if Eq. (7) holds for 
any iuδ &, jiπ&  is shown to satisfy , 0ji jπ =&  and ji jiπ Π〈 〉 = && .  

Substituting Eq. (2) into Eq. (7), and employing Eq. (5) and *
, 0jl k juσ δ〈 〉 =& , we can 

derive micro/macro linking equations 
0 *
, ,( )ji ijkl k l k ll u uΠ = +& & & , * * 0 *

, , ,ijpq p q i j kl ijkl i jl u u c uδ ε δ= −&& & & , (8, 9) 
where *

iuδ &  is any velocity field satisfying the kY-periodicity. Eq. (8) is the volume 
average of the microscopic constitutive relation (2) and thus can be regarded as a 
macroscopic constitutive relation. Eq. (9) is the boundary value problem to find the 
current field of *

iu& in kY, * ( , )iu t& x , induced by 0
, ( )k lu t& . 

In Eq. (9), *
iu& is linearly related with 0

klε& , so that Eq. (9) has a fundamental solution 
* 0kl
i i klu χ ε= && . (10) 

The function kl
iχ  in Eq. (10) is determined by solving a boundary value problem 
* *

, , ,
kl

ijpq p q i j ijkl i jl u c uχ δ δ= −& & , (11) 
where kl

iχ  is required to be kY-periodic. Since ijkl ijlkc c= , Eq. (11) gives kl lk
i iχ χ= . 

Solution (10) provides the macroscopic constitutive relation (8) with the form 
0
,( ) ( ) ( )H

ji ijkl k lt L t u tΠ =& & , ,( )H kl
ijkl ijkl ijpq p qL t l l χ= + . (12, 13) 

Substituting Eq. (12) into Eqs. (6) and (13), and using Eq. (4) and , 0kl
jq p qσ χ〈 〉 = , we have 

0H
ij ijkl klS C ε=& & , ,

H kl
ijkl ijkl ijpq p qC c c χ= + , H H

ijkl ijkl ik jlL C δ Σ= + . (14, 15, 16) 
We can show that H H

ijkl klijL L=  and H H H H
ijkl jikl ijlk klijC C C C= = = . It is emphasized that H

ijklL  is 
responsible for macroscopic instability. Macroscopic instability occurs, if homogenized 
incremental stiffness H

ijklL  has a loss of ellipticity. We have examined the onset of 
macroscopic instability by introducing the acoustic tensor [e.g., 9]. This tensor is defined 
as 0 0H

ik ijkl j lA L n n= , where 0
in  indicates the unit normal to a macroscopic surface. Then, the 

instant we find a direction 0
kg  satisfying 0 0ik kA g = , instability occurs with respect to 

macroscopic velocity gradient 0 0
k lg n . Thus, the condition of macroscopic instability is 

expressed as 
det 0=A . (17) 

At the onset of microscopic bifurcation, fundamental solution (10) becomes a 
particular solution, as Eq. (9) comes to have the eigensolution(s) ( )r

iφ  determined by 
( ) *
, , 0r

ijpq p q i jl uφ δ =& , r =1,2, ... ,m, (18) 
where m denotes the degree of multiplicity. Eq. (9) thus has a bifurcated solution 

* (0) 0 ( ) ( )

1

m
kl r r

i i kl i
r

u κ χ ε κ φ
=

= +∑&& , (19) 
where ( ) ( 0,1, , )r r mκ = K  are constants. We can show that ( )r

iφ  satisfies orthogonality  
( ) ( )
, , 0r r

ijkl i j ijkl i jl cφ φ= = , r =1,2, ... ,m. (20) 
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Results of Analysis 
The elastic square honeycombs considered are illustrated in Fig. 1. They are subject 

to in-plane uniaxial compression. The cell walls of honeycombs have a thickness h and a 
length l. The elastic properties are Young’s modulus E and poison ratio ν .The dashed 
lines in Fig. 1 indicate examples of the periodic units assumed in this study. They consist 
of N N×  cells, and this kind of periodic units will be denoted as N NY ×  hereafter. 

The analysis of microscopic bifurcation was done, first, by assuming a small periodic 
unit 2 2Y ×  in the case of / 0.059h l = . Microscopic bifurcation then occurred at the point 
tagged 2 2×  on the macroscopic stress-strain relation in Fig. 2, where short wave 
buckling stress SWBΣ  [6,10] is nondimensional parameter. This microscopic bifurcation 
was simple, i.e., 1m = , so that Eq. (18) had an eigensolution, which was uniquely 
determined. The eigenmode of 2 2Y ×  determined is illustrated in Fig. 3(a). 

The analysis was carried further by assuming periodic units 4 4Y × , 8 8Y ×  and 16 16Y × . 
Microscopic bifurcation, then, occurred at smaller compressive stresses than SWBΣ , but 

1x

2x

l

h

2 2Y ×

4 4Y ×
2 2×

4 4×

8 8×

16 16×

0
22ε

Fig. 2. First microscopic bifurcation 
points based on N NY ×  ( 2, 4, 8,16N = ), 
and macroscopic instability point. 

Fig. 1. Periodic units of square 
honeycombs, and coordinates for 
analysis. 

Fig. 3. Eigenmode at the onset of first microscopic bifurcation; (a) 2 2Y × , (b) 16 16Y × . 

 (a) (b)
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8 8Y ×  and 16 16Y ×  gave nearly the same bifurcation points (Fig. 2). The microscopic 
bifurcation thus depended on the number of cells per periodic length. Moreover, the 
multiplicity was found to be two, i.e., 2m = , at the bifurcation points by 4 4Y × , 8 8Y ×  and 

16 16Y × , so that (1) (1) (2) (2)
i i iφ κ φ κ φ= +  for these periodic units. This multiplicity was 

attributable to the two degrees of freedom of long-wave bifurcation, i.e., phase shift and 
wave form, as was shown for hexagonal honeycombs in the plastic range [5]. We thus 
found that the eigenmodes were of the shear type, as seen from that of 16 16Y ×  illustrated in 
Fig. 3(b). These results allowed us to say that the shear type of long-wave bifurcation 
occurred when 4 4Y × , 8 8Y ×  and 16 16Y ×  were assumed. 

Macroscopic instability condition (17) was examined. Consequently, macroscopic 
instability occurs when 0

in  is parallel with the x2-direction. In this case, 22 ( 0)Σ <  
satisfies the following condition: 

1212 22 0HC Σ+ = , (21) 
i.e., 1212 0HL = . Then, we find that 0

ig  is parallel with the x1-direction. Therefore, we can 
say that the shear type of macroscopic instability occurs in elastic square honeycombs 
subject to in-plane uniaxial compression. This result is in accordance with the long-wave 
bifurcation eigenmode shown in Fig. 3(b).  

Let us suppose that the macroscopic instability of elastic square honeycombs occurs at 
small, macroscopic strains. The variation in 1212

HC  is, then, negligible before the onset of 
macroscopic instability, so that we have 1212 12

H HC G≈ , where 12
HG  indicates the 

homogenized in-plane shear rigidity of elastic square honeycombs at small strains. If the 
beam theory is applied to cell wall deflection [10], and if the flexural rigidity of plates is 
taken into account for the deflection, 12

HG  is represented as 
3

12 22(1 )
H E hG

lν
 =  −  

. (22) 

Then, by substituting Eq. (22) into Eq. (21), the onset stress of macroscopic instability, 

h l

3

22(1 )LWB
E hΣ
ν

 =  −  l

Fig. 4. Comparison of the buckling stress by Eq. (23) and the onset stress of 
macroscopic instability in finite element computation. 
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i.e., the lowest stress of long-wave buckling, of elastic square honeycombs subject to in-
plane uniaxial compression is evaluated to be 

3

22(1 )LWB
E h

l
Σ

ν
 =  −  

. (23)  

Figure 4 compares the buckling stress by Eq. (23) and the onset stress of macroscopic 
instability obtained in the present computation. 
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