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Summary 
A general framework to analyze microscopic bifurcation and post-bifurcation 

behavior of elastoplastic, periodic cellular solids is developed on the basis of a 
two-scale theory of the updated Lagrangian type. We thus derive the eigenmode 
problem of microscopic bifurcation and the orthogonality to be satisfied by the 
eigenmodes. By use of the framework, then, bifurcation and post-bifurcation analysis 
are performed for cell aggregates of an elastoplastic honeycomb subject to in-plane 
compression. Thus, demonstrating a long-wave eigenmode of microscopic bifurcation 
under uniaxial compression, it is shown that the eigenmode causes microscopic 
buckling to localize in a cell row perpendicular to the loading axis. It is also shown that 
under equi-biaxial compression, the flower-like buckling mode having occurred in a 
macroscopically stable state changes into an asymmetric, long-wave mode due to the 
sextuple bifurcation in a macroscopically unstable state, leading to the localization of 
microscopic buckling in deltaic areas. 

 
Introduction 

When cellular solids are subject to compression, buckling may occur in cell 
walls and edges. This kind of buckling, which is called microscopic buckling, is of 
interest from a mechanics point of view because of two features: The first is the 
complexity of buckling modes, which has been typically observed in hexagonal 
honeycombs [1, 2]. The second is the macroscopic localization of microscopic 
buckling. When metallic and polymer honeycombs were transversely compressed, 
microscopic buckling was likely to localize in a cell row and then propagate to the 
neighboring cell rows, yet it localized rather broadly under equi-biaxial compression 
[2]. Such macroscopic localization may be enhanced by microscopic plastic 
deformation, since it generally greatly reduces macroscopic stiffness. 

In this study, a general framework to analyze microscopic bifurcation and 
post-bifurcation behavior of elastoplastic, periodic cellular solids is built on the basis 
of the updated Lagrangian type of two-scale theory developed in [3]. By use of the 
framework, bifurcation and post-bifurcation analysis are performed for cell 
aggregates of an elastoplastic honeycomb subject to in-plane compression. 
 

Theory 
We consider an infinite, periodic body B  that has a unit cell Y and is subject to 

macroscopically uniform stress or strain. A general framework is then established by 

                                                  
1 Department of Mechanical Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan 
2 Department of System Design Engineering, Keio University, Kohoku-ku, Yokohama 223-8522, Japan 

1503
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



employing a two-scale theory of the updated Lagrangian type and by taking into 
account the kY-periodicity of microscopic deformation as well as the multiplicity of 
microscopic bifurcation. Here, kY indicates a cell aggregate consisting of k unit cells. 
The framework is generally built without recourse to the symmetry of microscopic 
bifurcation in contrast to the previous framework [3]. Velocity iu  is decomposed 
into macroscopic part 0

iu  and microscopic, kY-periodic part *
iu . We thus derive the 

eigenmode problem of microscopic bifurcation, Eq. (1), and the orthogonality to be 
satisfied by the eingenmodes, Eq. (2): 
 

( ) *
, , 0r

ijkl k l i jl uφ δ = , 1, 2, ,r m= … , (1) 
 

( )
, 0r

ijkl k ll φ = , 1, 2, ,r m= … , (2) 
 
where 〈 〉  indicates the volume average in kY, ijkll expresses microscopic stiffness, 

( ) (r
i rφ = 1, 2, , )m… denote eigenmodes, *

iuδ is any kY-periodic velocity field, 
,( ) i represents the differentiation with respect to Cartesian coordinate ix , and m 

signifies the degree of multiplicity. 

Eq. (1) holds with respect to any kY-periodic velocity field *
iuδ . Hence, taking 

( )* s
i iuδ φ=  in (1), we have ( ) ( )

, , 0r s
ijkl i j k ll φ φ = , 1, 2, ,r m= … , 1, 2, ,s m= … . 

Consequently, if microscopic bifurcation occurs, the stability condition of Hill is 
interrupted. 

We can show that at the onset of microscopic bifurcation, orthogonality (2) 
allows the macroscopic increments to be determined independently of the 
eigenmodes, resulting in a simple procedure of the elastoplastic post-bifurcation 
analysis based on the notion of comparison solids. 

・・・・・

・・
・

(1,1) (2,1) ( ,1)M
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Fig. 1. Periodic unit kY consisting of M N× subunits, each of which is an 
aggregate of 2 2×  cells; chain, dashed and dotted lines indicate three pairs of 
boundary sides, and small circles designate the nodal points with * 0iu = . 
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Analysis of Honeycombs 

The theory mentioned above was applied to the in-plane buckling analysis of an 
elastoplastic honeycomb. The honeycomb was subject to in-plane either uniaxial or 
equi-biaxial compression. We employed the periodic unit kY that consisted of 
M N×  subunits, each of which was an aggregate of 2 2×  cells (Fig. 1). This type 
of periodic units are denoted as 2 2M NY × . Figure 2 depicts the shape and finite element 
mesh of subunits employed in the present study. The thickness and length of cell 
walls, w  and , have a ratio of / 0.1w = , as shown in the figure. The mesh was 
formed by means of four-noded isoparametric elements. Each node had three nodal 
values to represent the generalized 2D deformation in which *

3 0u ≠  but 
*

3/iu x∂ ∂ 0= , 1, 2, 3i = . 

The analysis of uniaxial compression was done by use of the 2 2NY ×  type of 
periodic units. Then, subsequent to the first bifurcation that was simple and had a 
short wavelength, the second bifurcation occurred in macroscopically unstable states 
(Fig. 3). The second bifurcation had the following features: It was double, i.e., 

2m = , in contrast to the first bifurcation. It occurred earlier with the increase of the 
vertical cell number, but 2 16Y × , 2 32Y × , and so on had almost the same second 
bifurcation points, as indicated in Fig. 3. Therefore, we can say that the vertical cell 
number of the periodic unit has significant influence on the second bifurcation under 
uniaxial compression. 

The finding of 2m =  mentioned above suggested two basic eigenmodes (1)φ  
and (2)φ  at the second bifurcation points. The inverse power method, then, allowed 
us to determine combined eigenmodes of the second bifurcation, which are 
expressed as (1) (1) (2) (2)c c= +φ φ φ . Here (1)c  and (2)c  are constants. We thus found 
that the second bifurcation has the Bloch wave property. The wave property can 
provide the eigenmode φ  with a phase shift in addition to the wave form. This 
additional degree of freedom accounts for 2m =  at the second bifurcation points 
under uniaxial compression. 

Fig. 2. Shape and finite element mesh of subunits (1296 elements, 1598 nodes). 

w
/ 0.1w =
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The second post-bifurcation analysis was performed by adding a basic 
eigenmode (1)φ  to the fundamental solution. The addition of (1)φ  did not instantly 
influence on the change in macroscopic stress in accordance with orthogonality (2), 
but shortly after the second bifurcation point, macroscopic softening became 
significant temporarily and then calm, as shown in Fig. 3. The development of 
microscopic deformation after the onset of the second bifurcation is illustrated in 
Figs. 4(a) and 4(b), in each of which the configuration of 2 16Y ×  at a macroscopic 
strain is arranged periodically in the 1x -direction. It is seen from the figures that 
microscopic buckling localized in a cell row perpendicular to the loading direction 
with the increase of macroscopic compressive strain. 

The buckling behavior under equi-biaxial compression was analyzed by use of 
the 2 2N NY ×  type of periodic units. Then, as was demonstrated in [3, 4], a triple 
bifurcation appeared to cause the flower-like buckling mode, which was 
experimentally found in [2]. Subsequently, a long-wave, sextuple bifurcation 
occurred soon after initial yielding, if such large periodic units as 14 14Y × , 16 16Y × , and 
so on were assumed (Fig. 5). Let us emphasize that the second bifurcation was 
sextuple, i.e., 6m = , in the case of equi-biaxial compression. This multiplicity was 
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Fig. 3. Macroscopic stress-strain relation under uniaxial compression. 

(a) (b) 
Fig. 4. Microscopic deformation of 2 16Y ×  under uniaxial compression; 
(a) 0

22 0.15ε = − , (b) 0
22 0.19ε = − . 
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interpreted by noticing that the three directions of cell walls are equivalent under 
equi-biaxial compression, and that long-wave eigenmodes have the multiplicity of 

2m =  due to the additional degree of freedom resulting from phase shifts. The 
sextuple bifurcation was, thus, ascribed to synchronicity of the three long-wave 
eigenmodes inducing the localization of microscopic buckling in cell-rows 
perpendicular to the three directions of cell walls. 

The second bifurcation under equi-biaxial compression, which turned out to be 
asymmetric, induced some enhancement of macroscopic softening shortly after the 
second bifurcation point, as shown in Fig. 5. The microscopic deformation caused 
by the second bifurcation is depicted in Figs. 6(a) and 6(b). It is seen from the 
figures that the flower-like buckling mode uniformly prevailed at the second 
bifurcation point, and that the localization of microscopic buckling developed in 
deltaic regions. The localization in such unnarrow regions was likely to occur 
experimentally [2]. Incidentally, changing the sign of the eigenmode at the second 
bifurcation point resulted in jerky variations in macroscopic stresses.  
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Fig. 5. Macroscopic stress-strain relation under equi-biaxial compression. 

Fig. 6. Change in deformation of 16 16Y ×  due to the second bifurcation under 
equi-biaxial compression; (a) second bifurcation point, (b) 0 0

11 22 0.04ε ε= = − . 
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Conclusions 

On the basis of a two-scale theory of the up-dated Lagrangian type, a general 
framework was developed to analyze microscopic bifurcation and post-bifurcation 
behavior of elastoplastic, periodic cellular solids. The framework was applied to the 
in-plane buckling analysis of honeycombs. We thus had the following findings: 
Subsequent to the microscopic bifurcation with no dependence on periodic length, 
the long-wave microscopic bifurcation depending on periodic length occurred in 
macroscopically unstable states. In the case of equi-biaxial compression, the 
flower-like buckling mode having occurred in a macroscopically stable state 
changed into an asymmetric, long-wave mode due to the sextuple bifurcation in a 
macroscopically unstable state, leading to the localization of microscopic buckling 
in deltaic areas. 
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