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Summary

This paper introduces a meshless numerical scheme derived from radial basis functions
for solving problems with boundary singularity. Since radial basis function is a continu-
ously differentiable, positive definite and integrable function, it can easily be used to solve
higher order differential equations with singularities.

Introduction to Meshless RBFs Method

The radial basis functions (RBFs) were originally devised for scattered geographical
data interpolation by Hardy [1], who introduced a class of functions called multiquadric
functions in the early 1970’s. The basic idea of the RBFs interpolation is to approximate
an unknown function, � f �x� : x � Rd� by an interpolant, say � �f �x� : x � Rd� at a set of
N distinct data points X �

�
x j : j � 1�2� � � � �N

�
. Let Φ : R� � R be a set of positive

definite basis functions defined by Φ � φ��x�x j�� on a fixed space Rd . Here φ��x�x j��
is referred to a typical type of RBFs solely dependent on the Euclidean distance between x
and a fixed point x j � Rd .

The general form of RBFs interpolant to a function f �x� can be expressed in the form
of a finite series

�f �x� � N

∑
j�1

α jφ���x�x j����
L

∑
k�1

bk pk�x� x � Rd � 0 � L� N� (1)

where the term �pk�x��k � 1�2� � � � �L� is a basis of polynomial and α �

js and b�ks are the
unknown coefficients. The approximation function in (1) has a unique solution if the
system satisfies the conditions �f �xi� � f �xi� and the constraints ∑N

j�1 α j pk�x j� � 0� for
i � 1�2� � � � �N� k � 1�2� � � � �L� for L � N. This yields a system of linear equations, which
can be expressed in matrix form

�
Mφ

�
�α � �Y� where

�
Mφ

�
is a square matrix, �α and �Y

are column matrices. Since each RBF, φ � Rd is positive definite, the matrix
�
Mφ

�
is

non-singular so the linear system has a unique solution. The unknown coefficients α �

js and
b�ks can also be obtained uniquely by solving the linear system. In other words, the non-
singularity of the interpolation matrix �Mφ� can be guaranteed, provided the matrix �Mφ� is
positive definite for all sets of distinct centers X � �x1�x2� � � � �xN� � Rd .

A general theory on the existence, uniqueness and convergence of the RBFs interpola-
tion was proven by Micchelli [2] in 1986. Micchelli’s result was extended by Powell [3],
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and Wu et al [4] to deduce some important non-singularity properties of the RBFs interpo-
lation. There are many possible radial basis functions. The most commonly used has been
the multiquadric function, reciprocal multiquadric, thin plate splines and Gaussian.

Application to Boundary Value Problems with Singularities

The present paper illustrates a class of meshless RBFs method, which possesses a
simple mathematical formulation and high order of convergence, to solve problems with
singularity. Motz’s problem is used as a reference test to illustrate the numerical perfor-
mance. This problem was first study by Motz [5] in 1947 using the finite difference scheme
together with the relaxation method. Whiteman [6] et al in 1972 extended the study using
the conformal transformation method. Thatcher [7] in 1976 made use of infinite grid re-
finement to deal with singularities. Most recently, Li [8] in 1998 studied the problem
extensively with conformal mappings and some combined methods.

The problem deal with the Laplace equation�2u � 0, over a square region satisfying
the mixed Neumann and Dirichlet boundary conditions as indicated in Figure 1(a). The
singular point occurred at the crack tip produces discontinuity of the solution at the origin.

The solution of Motz’s problem has been found to be anti-symmetric over a unit square.
This leads to have the transformation v� �u�500�, which only requires to solve the upper-
half of the square plate Ωu. The transformed problem is defined on Ω v � ��x�y��� L

2 	 x	
L
2 �0 	 y 	 L

2� as depicted in Figure 1(b). Thus, the transformed Motz’s problem and its
boundary conditions can be re-written as

�2v � 0� in Ωv
∂Ωv � R2 (2)

subject to the following boundary conditions

Γ1 : ∂v
∂x � 0 for x �� L

2 �0	 y	 L
2 ; Γ2 : ∂v

∂y � 0 for � L
2 	 x	 L

2 �y � L
2 ;

Γ3 : ∂v
∂y � 0 for y � 0�0	 x	 L

2 ; Γ4 : v � 0 for � L
2 	 x	 0�y � 0;

Γ5 : v � 500 for x � L
2 �0	 y	 L

2 �

According to the analysis of singularity from Motz [5] the local analytic solution v h�x� in
the vicinity of the singular point can be modelled by the following series expansion

�r�θ� : vh �r�θ� �
∞

∑
i�1

Ai ri� 1
2 cos ��i�1�2�θ� � (3)

where Ai are the expansion coefficients, and �r�θ� is the polar coordinates of the neighbour-
ing point about the origin. The next section describes the application of the computational
procedures.

Computational Procedure and Numerical Results

To handle the boundary singularity in the neighbourhood of the singular point, the
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Figure 1: (a) The original Motz’s problem, (b) Transformed problem and its bound-
ary conditions

involved domain Ωv � R2 is divided into two non-overlapping subdomains Ω v1 and Ωv2

such that Ωv � Ωv1 �Ωv2 . The subdomain Ωv2 as shown in Figure 2(b) is the open upper-
half disk with radius rs, which covers the origin that forms the boundary singularity.

Let X1 � �x1�x2� � � � �xNint� � R2 in Ωv1
∂Ωv and X2 � �xNint�1� � � � �xN� � R2 in ∂Ωv

be a set of distinct interior and boundary nodal points respectively, where N is the total
number of collocation points over the subdomain Ω v1 such that N �

�
Nint �∑5

i�1 NΓi

�
,

Nint stands for the number of interior nodal points and NΓi stands for the number of nodal
points on boundary Γ i� for i � 1�2�3�4�5. These points are selected to coincide with the
collocation points over the subdomain Ωv1 . By collocating at the same set of nodal points
�xi�yi�

N
i�1 from X1 and X2, the RBFs interpolant for the solution to equation (2) is given by

vh �x�y� �
N

∑
j�1

α jφ�r j��β1x�β2y�β3� in Ωv (4)

subject to the following three linear conditions

N

∑
i�1

αixi �
N

∑
i�1

αiyi �
N

∑
i�1

αi � 0� (5)

such that the coefficients of β1� β2 and β3 of equation (4) can be determined uniquely.
The unknown coefficients α�

js and β1, β2, β3 are to be determined by collocating N dis-

tinct scattered points
�
�x j�y j�

�N
j�1. In this example, the basis function φ�r j� is taken

to be the classical multiquadric radial basis function (MQ-RBFs), which is defined by

φ�r j� �
�

�x� x j�
2 ��y� y j�

2 �δ2
j � for j � 1�2� � � � �N, where δ2

j is the shape parameter.

The magnitude of the shape parameters δ j is a key factor for obtaining accurate solution.
The effect of the shape parameter has been reported in several references, such as in [9].
This study observed that the optimal solutions can be achieved by setting δ j �C as a con-
stant between 0�65	C 	 0�9.
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Differentiating equation (4) with respect to x and y yields the required partial deriva-

tives ∂2vh
∂x2 and ∂2vh

∂y2 . The unknown coefficients α�

js and β1, β2, β3 can be determined by
substituting these partial derivatives into the equation (2), which yields the following sys-
tem

N

∑
j�1

α j

��
1�M2

x

�
φ�ri� j�

�

�
1�M2

y

�
φ�ri� j�

	
� 0� in Ωv1
∂Ωv (6)

for the interior points i � 1� � � � �Nint , where Mx � �xi� x j��φ�ri� j�, My � �yi� y j��φ�ri� j�
and φ�ri� j� is the chosen radial basis function. The specific boundary conditions in Γ �

is are
approximated by

∑N
j�1 α jMx �β1 � 0; �xi�yi� � Γ1,

∑N
j�1 α jMy �β2 � 0; �xi�yi� � Γ2�Γ3;

∑N
j�1 α jφ�ri� j���β1xi �β2yi �β3� � 0;�xi�yi� � Γ4;

∑N
j�1 α jφ�ri� j���β1xi �β2yi �β3� � 500; �xi�yi� � Γ5�


�����
 (7)

Once the coefficients are determined, the approximate solutions v h �xi�yi� in Ω1 can be
calculated. We now turn to consider the treatment of the singularity at the origin. Let N d

be the number of distinct nodal points inside Ω v2 , which are close to the singular point.
The solutions vh in Ωv2 are calculated by using the series expansion in equation (3) which
yields the expression

vh�r�θ� �
Nd

∑
m�1

Amrm� 1
2 cos�m�1�2�θ� in Ωv2 � (8)

This paper incorporates with the least square approximation method to calculate the
best fit for coefficients

�
Aj : j � 1�2� � � � �Nd

�
of the series expansion. To do this, we choose

�Nd � l� nodal points inside the subdomain Ωv2 , where l 
 3. These nodal points have a
one-one correspondence between their polar coordinates and their Cartesian coordinates:
�rk�θk�� �xk�yk�, where xk � rk cosθk and yk � rk sinθk� for k � 1� � � � ��Nd � l�. We take
l � 3 in this study. The sum of squares of the error between v h �xk�yk� and vh �rk�θk� are
given by

S � ∑
�xk�yk�

�
vh �xk�yk��

�
Nd

∑
m�1

Amr
m� 1

2
k cos�m�1�2�θk

�	2

� (9)

The best fitted coefficients A�

ms can be determined by minimizing S, the sum of the squares
of the error, hence

∂S
∂Am

� 0� for m � 1�2� � � � �Nd � (10)
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In the computation, we organized equations (5), (6), (7) and (10) into a matrix form,
�M� ��a� � ��p�, where �M� has order �N �3�Nd���N �3�Nd�, ��a� and ��p� are �N �3�Nd�
column vectors. As mention previously, MQ-RBFs is positive definite and continuously
differentiable, the resulting matrix �M� is conditionally positive definite and hence invert-
ible. Once the unknown coefficients are determined, we can proceed to calculate the ap-
proximation solution vh�xi�yi� accordingly by using equation (4) and (8).

The numerical results are compared with those from the reference book presented by
Li [8], where the author used boundary approximation method to evaluate the values with
double precision. In the present numerical experiment, the numerical results are generated
in double precision and the numerical accuracy is found to be seriously affected by the
large condition number of the full coefficient matrix �M�. The maximum relative errors
of the approximate solutions is about 5�30E-02 when 261 collocation points are selected.
Figure3(a) depicted the approximate solution v �hs over the entire domain and Figure 3(b)
illustrates the approximate solution v �hs at three specific nodal points at y � 0�3, 0�5 and
0�8. It can be observed from these figures that the proposed method produce a reasonable
degree of accuracy, which indicates a good performance of using the MQ-RBFs method in
the given model.

In summary, the important shortcoming of the global MQ-RBFs method is the poor
condition number, which has seriously hindered its ability from solving the system with a
large number of nodal points. This property makes the model to produces a rather weak
approximation in the region with Neumann boundary condition. However, this shortcoming
can be handled by using domain decomposition scheme when solving problems with a large
system of equations. The authors of this paper is currently investigating the numerical
performance of domain decomposition with RBFs method. The preliminary results have
been shown to be very effective to overcome the shortcoming of RBFs method problem.
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Figure 2: (a) Collocation points on subdomain Ωv1 , (b) Collocation points inside
the upper half disk Ωv2 with 0 � θ � π, 0 � r � rs

Acknowledgment This research is supported by the Research and Development Fund of
the Open University of Hong Kong, No. 03/1.2 and Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No. CityU 1178/02P).

1388
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



-1.0 -0.5 0.0 0.5 1.0
x

0

100

200

300

400

500
solution v at y=0.3
solution v at y=0.5
computed v at y=0.8

Computed solution v's against x

v

(b)

y

(a)

Figure 3: (a) The solution of vh�x�y� over entire domain Ωv, (b) The solution
vh�x�y� at three nodal points y � 0�3�0�5 and 0�8�
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