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Summary

Wave propagation in functionally graded materials (FGMs) is analyzed. To gain a
better understanding of the wave propagation characteristics in FGMs, a one-dimensional
model is first considered. Exponential laws are used to describe the spatial variation of
the Young’s modulus and the mass density of the FGMs. Numerical examples are given
to show the effects of the material gradation on the shape and the amplitude of the stress
waves. Numerical methods for two- and three-dimensional wave propagation simulations
are briefly discussed.

Introduction

Functionally graded materials (FGMs) are a new class of composites designed to
achieve high performance levels superior to homogeneous materials by combining the de-
sirable properties of each constituent. In ideal case, FGMs have a continuous material
profile graded from one constituent to another. In this way, desirable advantages of both
constituents can be incorporated. FGMs have superior in-service advantages to meet the
increasingly growing demands on engineering materials to withstand extreme loading con-
ditions, such as super-high temperatures and mechanical impacts.

In many real situations, FGMs may be subjected to a mechanical impact loading, which
initiates elastic waves propagating through the solids. Thus, an important issue in the re-
search of FGMs is the wave propagation analysis in such materials. The corresponding
results have direct relevant applications in the design, optimization, safety and structural
integrity analysis, as well as ultrasonic non-destructive testing of FGMs. With this moti-
vation in mind, wave propagation analysis is presented in this paper. First we present a
simple one-dimensional model, and then we give a brief review on numerical methods for
two- and three-dimensional wave propagation simulations.

One-dimensional Wave Propagation

To gain a deeper insight into the wave propagation characteristics in FGMs, let us first
consider one-dimensional wave propagation in a FGM rod. The rod has a length l and is
fixed on one end at x = 0, while an impact load f (t) is applied on another end of the rod at
x = l. The spatial variations of the Young’s modulus and the mass density are described by
the following exponential laws

E(x) = E0eαx , ρ(x) = ρ0eβx , (1)
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where E0 and ρ0 are the material constants at x = 0, while α and β are the gradient param-
eters, which can be obtained by using the following relations

α =
1
l

log

[

E(l)
E0

]

, β =
1
l

log

[

ρ(l)
ρ0

]

. (2)

The equation of motion is given by

∂σ(x,t)
∂x

= ρ(x)
∂2u(x,t)

∂2t
. (3)

Substitution of the generalized Hooke’s law

σ(x,t) = E(x)
∂u(x,t)

∂x
(4)

into Eq. (3) we obtain the following one-dimensional wave equation

∂
∂x

[

E(x)
∂u(x,t)

∂x

]

= ρ(x)
∂2u(x, t)

∂2t
. (5)

Substitution of Eq. (1) into Eq. (5) yields

α
∂u(x,t)

∂x
+

∂2u(x,t)
∂2x

=
1

c2
0

e−(α−β)x ∂2u(x, t)
∂2t

, (6)

in which c0 =
√

E0/ρ0 is the wave velocity at x = 0.

As initial and boundary conditions we have

u(x,0) = u̇(x,0) = 0 , for t = 0 , (7)

u(0,t) = 0 , at x = 0; σ(l, t) = f (t) , at x = l , (8)

By applying the Laplace-transform to Eq. (6) we obtain

α
∂ū(x)

∂x
+

∂2ū(x)
∂2x

=
p2

c2
0

e−(α−β)xū(x) , (9)
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where p is the Laplace-transform parameter and an over-bar denotes the Laplace-transform
of a quantity. The transformed boundary conditions can be written as

ū(0) = 0 , at x = 0; σ̄(l) = f̄ (p) , at x = l , (10)

Equation (9) in conjunction with Hooke’s law (4) has the following solutions

ū(x) = e−
1
2 αx [c1Jν(z)+ c2Yν(z)] , (11)

σ̄(x) = −1
2

E0(α−β)z [c1Jν−1(z)+ c2Yν−1(z)] , (12)

where Jν(z) and Yν(z) are the ν-th order Bessel functions of the first and second kind with

ν =
α

α−β
, z = 2i

∣

∣

∣

∣

p
α−β

∣

∣

∣

∣

e−
1
2 (α−β)x . (13)

It should be remarked here that α = β = 0 corresponds to the homogeneous case. If we as-
sume the same exponential spatial variation for the Young’s modulus and the mass density,
i.e., α = β �= 0, then a constant wave velocity throughout the graded rod is obtained. This
case has been often considered in literature to simplify the analysis and make the investi-
gation tractable. The general case α �= β �== 0, however, has yet not been investigated in
literature to the best of the author’s knowledge.

The constants c1 and c2 in Eqs. (11) and (12) can be obtained by using the transformed
boundary conditions (10), but they are not given here for the sake of brevity.

After the solutions have been obtained for discrete Laplace-transform parameters,
the corresponding time-dependent solutions can be obtained by using an inverse Laplace-
transform algorithm. In this analysis, we apply the automatic inversion algorithm of D’Amore
et al. [1]

As external loading, we consider an impact pressure loading of the form

f (t) = −σ0 [H(t)−H(t− t0)] . (14)

Equation (14) represents a rectangular pulse with an amplitude σ 0 and a duration t0. Nu-
merical calculations are carried out for a pulse duration of t 0 = 0.2l/c0.

For a homogeneous rod, the normalized stress at x = 0 versus the dimensionless time is
shown in Fig. 1. The numerical results agree very well with the analytical one. Characteris-
tic for wave propagation in a homogeneous rod are: 1) The pulse shape remains unchanged,
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Figure 1: Normalized stress at x = 0
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Figure 2: Normalized stress at x = 0
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Figure 3: Normalized stress at x = 0
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Figure 4: Normalized stress at x = 0

i.e., without pulse shape distortion, and 2.) the pulse amplitude remains constant. As is well
known, the stress amplification factor for a homogeneous rod is 2.

Figures 2 and 3 show the time-dependence of the normalized stress at x = 0 for a FGM
rod with constant wave velocity, i.e., αl = βl �= 0. In comparison to the homogeneous case,
there are two distinct differences: 1.) The material gradation gives rise to a pulse distortion,
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and 2.) there is a change in the pulse amplitude. Depending on the material gradation, the
pulse amplitude may be amplified or reduced.

For the general case with αl �= βl �= 0, the normalized stress at x = 0 is shown in Fig.
4. As in the case of αl = βl �= 0, the pulse shape is now distorted, and the pulse amplitude
is changed. Compared to the case with αl = βl �= 0, no qualitative differences are observed.
However, there are quantitative differences between both cases, both in the pulse amplitude
and in the time, at which the maximum pulse amplitude is reached. Qualitatively, our
numerical results agree very well with those of Chiu and Erdogan [2], who investigated a
similar problem by using power-laws to describe the material gradients.

Two- and Three-dimensional Wave Propagation

Two- and three-dimensional wave propagation analysis requires sophisticated numeri-
cal methods due to the mathematical complexity of the governing partial differential equa-
tions. For this purpose, the following methods can be applied:

• Multi-layer Model ([3], [4]);

• Finite Element Method (FEM) ([5]-[7]);

• Finite Volume Method (FVM) ([8], [9]);

• Boundary Element Method (BEM) [10].

In the multi-layer model ([3], [4]), the analyzed domain is divided into several strips or
layers along the direction of the material gradient. In each layer, the material properties are
assumed to be constant, or linear, or quadratic. The essential disadvantage of this method
is that it cannot be easily extended to FGMs with bi- or tri-directional material gradations.
In addition, the method may not be suitable for cases with complicated geometrical bound-
aries, in which the material gradation is neither perpendicular nor parallel to the boundaries
of the FGMs.

The FEM is the most widely used and thoroughly developed computational method.
However, the most commercial FEM codes assume constant material properties within
each element, which may not be appropriate for nonhomogeneous solids such as FGMs.
To approximate the spatial variation of the material constants reasonably, very fine meshes
have to be applied, which increase the computational effort and reduces the efficiency of
the FEM ([5], [6]). An improvement of the classical FEM can be achieved by using the so-
called graded finite elements [7], which allow a spatial variation of the material parameters
within each element.

The FVM ([8], [9]) has the same trouble in dealing with the spatial variation of the
material properties within each element. This method is beneficial for FGMs with rapidly
varying material properties. Unfortunately, this method is yet less known in literature and
not widely applied.

The BEM is an efficient and popular alternative to the FEM in wave propagation anal-
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ysis. Though the BEM has been successfully applied to wave propagation simulations
in homogeneous materials since many years, its application to FGMs is unfortunately yet
very limited due the fact that the corresponding fundamental solutions or Green’s functions
for general FGMs are either not available or mathematically too complex. The nonhomo-
geneous nature of FGMs prohibits an easy construction of Green’s functions for general
cases. To overcome this difficulty, a meshless local BEM or local boundary integral equa-
tion method (LBIEM) based on the meshless local Petrov-Galerkin (MLPG) method has
been recently developed in [10] for elastodynamic analysis of FGMs. This method extends
the applicability range of the classical BEM to continuously nonhomogeneous solids, and
has certain advantages in comparison to other numerical methods.

Wave propagation in FGMs is an interesting and important research area, which needs
further intensive analytical, numerical and experimental investigations.
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