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Summary

The Moving Least Squares (MLS) approximation has been used with remarkable suc-
cess as basis of some meshless methods. In this work the GMLS (Generalized Moving
Least Squares) is used in the EFG context for the numerical solution of thin plates on elas-
tic foundation. The main advantage of the GMLS approximation is the improvement on the
quality and accuracy of the approximation when compared to MLS approximations using
similar number of nodes.

Introduction

The MLS (Moving Least Squares) approximation has been used (since the ”diffuse
elements” were first presented in 1992 by Nayroleset al [1]) as the basis of several mesh-
less methods. These include (but are not restricted to) Element-Free Galerkin method [2],
the hp-cloud method [3] (which uses enrichment over the partition of unity generated by
the zero-th order MLS approximation, the Sheppard function), the node-by-node meshless
method [4] and the Meshless Local Petrov-Galerkin (MLPG) method [5] (although the use
of MLS is not mandatory, as it was show by Atluriet al [6]). The GMLS was presented,
in 1999 by Atluri et al [7]) in the context of meshless local methods and it was applied
to one-dimensional bending problems of Euler-Bernoulli beams. Further developments on
the method were presented by Rajuet al [8]), where a computationally less expensive ap-
proach that eliminate the domain integrals for the stiffness part (in general, the evaluation
of the force vector still requires integrations on the domain) was presented. Application of
the GMLS approximation to two dimensional problems was first proposed (to the authors
knowledge) by the authors [9] in 2003. The performance of the method using quadratic,
cubic and quartic polynomial basis was analyzed in plate bending problems using the EFG
method. Further work on the subject is also being presented elsewhere [10]. Comparisons
with the MLS are presented herein which have revealed an increase of the accuracy of
the GMLS for the same number of degrees of freedom. It is very clear that, for the same
number of nodes, the accuracy is higher and the converge is faster. This is by no means a
surprise, because three degrees of freedom per node are used by the GMLS, whereas only
one is required by the MLS.

The use of MLS approximation allows for a quite convenient generation of continu-
ous functions of arbitrary order using only nodal values. Several works have been pre-
sented showing the success of the approach for solving static and free vibration of thin
plate bending problems by different methods: the Element-Free Galerkin [11], [12], theHp
Clouds [13] and MLPG [14], [15].

Following the Finite Element Method (FEM) approach, it seems rather natural to uti-
lize, for bending problems, other degrees of freedom besides the generalized displacement
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at the nodes. The basic idea of the GMLS is to build from a purely unstructured mesh of
points an approximation using not only the value of the function but also of its derivatives
at the nodes.

The variational form of the equilibrium equations will be presented for thin plates
on elastic foundation followed by the presentation of the governing system of equations.
Implementation aspects are discussed followed by the numerical results obtained and the
consequent conclusions.

Variational form of the equilibrium equations

The governing differential equation of the problem is:

∇4w+Kww = p (1)

wherew is the deflection of the middle surface of the plate,Kw is the Winkler modulus and
p is the imposed load.

As the GMLS approximation does not satisfy the Kronecker delta criterionΦI (xJ) 6=
δIJ , an extended weak form, which includes Lagrange multipliers functions, of the problem
is used.

Consider the following fields:

1. the approximation and the weighting functionsw(x) ∈ H2(Ω) andδw(x) ∈ H2(Ω)
for the displacements,w, on the domain,Ω;

2. the approximation and weighting functions,λMn(x)∈H0(Γ ∂w
∂n

) andδλMn(x)∈H0(Γ ∂w
∂n

),

of the normal bending moment,Mn, in the essential boundary where the normal ro-
tation, ∂w

∂n , is prescribed;

3. the approximation and weighting functions,λVn(x) ∈ H0Γw andδλVn(x) ∈ H0(Γw),
of the effective normal shear force,Vn, in the essential boundary where the transverse
displacement is prescribed,Γw.

HereHm denote the Sobolev space of degreem. Then, the solution of the problem is the
same as the solution expressed by the following equationZ

Ω
δχTDχdΩ+

Z
Ω

δwKwwdΩ−
Z

Ω
δwpdΩ−

Z
ΓMn

Mn

(
−∂δw

∂n

)
dΓMn

−Z
ΓVn

VnδwdΓVn
−
Z

Γ ∂w
∂n

δλMn

(
−∂w

∂n
+

∂w
∂n

)
dΓ ∂w

∂n

−
Z

Γw

δλVn (w−w)dΓw−Z
Γ ∂w

∂n

λMn

(
−∂δw

∂n

)
dΓ ∂w

∂n

−
Z

Γw

λVnδwdΓw = 0 (2)
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whereχ = LΩw, Mn = LMnw andVn = LVnw. In these expressions the curvatures,χ, the
normal bending moment and the normal effective shear force are derived from the displace-
ment field through the application of the differential operatorsLΩ, LMn and LVn, respec-
tively. Prescribed quantities are denoted by “”.

Governing System

The GMLS approximation will not be revisited here. The functional which is to be
locally minimized and the resulting expressions were presented before by Atluriet al [7]).
Examples of the resulting nodal functions are presented by the authors [10] elsewhere.

The GMLS can assume the convenient form

w(x) = Φw(x)U δw(x) = Φw(x)δU (3)

The Lagrange functions on the essential boundary are discretized as follows

λMn(x) = Φλ(x)ΛMn λVn(x) = Φλ(x)ΛVn (4a)

δλMn(x) = Φλ(x)δΛMn δλVn(x) = Φλ(x)δΛVn (4b)

In expressions (3) and (4) the quantitiesU, δU, ΛMn, δΛMn, ΛVn andδΛVn are the vectors
that collect the discrete parameters related to the respective continuous fields they represent.

Using the approximations (3) forw andδw and the expressions (4) on (2), for arbitrary
variations ofδU, δΛMn andδΛVn, the discretized problem can assume the form




K +Kw Gw G
∂w
∂n

GwT

G
∂w
∂n

T








U
ΛMn

ΛVn



 =





f
qw

q
∂w
∂n



 , (5)

where the meaning of all of the quantities is detailed in [13] exceptKw which is given by

Kw =
Z

Ω
ΦTKwΦdΩ. (6)

Implementation issues

As meshless methods are still very recent, several aspects in its implementation still
need to be investigated. The weight function used in the present work is given in [7]
because it allows control on the continuity of the function. Heres= 4 was used ensuring
continuous third derivatives and, consequently, continuous shear forces. The radius of
support was kept constant for all the nodes. For the basisp complete quadratic, cubic and
quartic polynomials were used. The integrations on the domain were carried out using a
background integration cell structure. This was not necessary at all, but it simplifies the
way the integration of the weak form was done. Gauss-Legendre quadrature was carried
out using6×6 points.

The MLS approximation was used for the functionsΦλ(x). This seams to be more
consistent with the approximations made on the domain than with the usual linear Lagrange
interpolation functions.
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Numerical example

Consider a simply supported circular plate on a elastic foundation with a central hole
and subjected to a uniform load. The data is: Young’s modulusE = 30.0 ·106, Poisson’s
ratio ν = 0.3, thicknesst = 0.1, Winkler’s foundation modulusKw = 1.0 · 106, exterior
radiusre = 1.0, interior radiusre = 0.5 and uniform loadp = 1.0. Double symmetry was
used to build up the model. The exact geometry of the problem was considered by the
inclusion of two circular sides. The three meshes represented on figure 1 were used. The
numerical exact solution was generated by the solution of the analogous one-dimensional
problem written in polar coordinates and using the Range-Kutta method. The accuracy of

(a) Coarse (25 nodes). (b) Medium (48 nodes). (c) Fine (67 nodes).

Figure 1: Meshes used in the analysis.

the solutions was measured using the relative error of strain energy,εU , given by

εU =
∣∣∣∣
Unum−Uexact

Uexact

∣∣∣∣ where U� =
1
2

Z
Ω

χT
�Dχ�dΩ. (7)

The results obtained are represented in figure 2 for the three basis and the three meshes.
The solution obtained for the radial moment,mrr , and the radial shear force,qr , using the
coarse mesh and quadratic basis is represented in figure 3.

Conclusions

A EFG procedure for thin plates on elastic foundation which uses GMLS as approxi-
mation was presented in this work. The Lagrange multiplier method was used to imposed
the essential boundary conditions and the approximation of the corresponding reaction
forces was made by one-dimensional MLS. The performance of the procedure was com-
pared with the traditional MLS. As expected, the GMLS provides a superior accuracy over
MLS for the same number of nodes. This fact becomes very clear by observing figure 3.
The explanation is because GMLS resorts to three times more degrees of freedom per node
than MLS. But even for the same number of the degrees of freedom, the GMLS provides
a much better solution in the example presented. In the implementation done it was also
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Figure 2: Results for the circular plate.

observed that, for the same basis, integration rule and number of degrees of freedom, the
GMLS requires less CPU time.
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