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Summary 

A local averaging procedure is proposed for determining effective properties of a 
reinforcement that has microstructure. This allows reduction in the number of 
microstructural scales. Preliminary results emphasize the importance of in situ modeling 
when determining the effective properties. 

Introduction 

Generally, heterogeneous materials would be too computationally intensive to 
analyze if each homogeneous subregion had to be modeled discretely. If the 
microstructure is sufficiently periodic, effective material properties for a representative 
volume element (RVE) can be determined using micromechanics. The original 
heterogeneous material is “replaced” by a homogeneous material and the effective 
properties are used. A common application of this strategy is replacement of a composite 
lamina that has millions of individual fibers with a homogeneous orthotropic material. At 
a larger scale, one can expedite the analysis of thick composite laminates by 
homogenizing subgroups of the lamina such that a laminate with a hundred distinct plies 
might be modeled as an equivalent laminate with only ten equivalent homogenized plies. 
[1]   

The application of micromechanics to expedite analysis of heterogeneous materials 
becomes more tenuous when there are multiple levels of heterogeneity. The original 
motivation for this investigation stemmed from an interest in describing the effective 
properties of a carbon nanotube in the context of a composite 
material. Nanotubes have attracted tremendous attention 
because they appear to have almost amazing properties that 
depend on the particular chirality, including extremely high 
strength, stiffness, thermal conductivity, and electrical 
conductivity, semi-conductivity, and unusual optical properties.  
When nanotubes are added to a matrix, there are multiple levels 
of microstructure. (Fig. 1) 

The nanotube has “microstructure” in the sense that it is a 
tube, not a solid rod. The nanotubes are dispersed in the matrix, 
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Figure 1 Nanotubes in matrix 
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creating a second level of microstructure. Conventional micromechanics techniques 
would use effective properties for the nanotube in a model that includes two 
homogeneous phases: the matrix and solid fibers. This paper examines the accuracy of 
this strategy. As part of the study, the concept of effective in situ effective properties will 
be explored. 

The complete paper will consider two basic 
configurations, which represent two different scales. The 
first consists of matrix with a fiber that is not solid, such as 
the carbon nanotube. The second consists of a laminated 
material in which the laminae contain transverse matrix 
cracks. (Fig. 2)  

In this second case, damage provides an additional level 
of inhomogeneity. Although they appear quite different, the 
challenge is similar. Because of space limitations in this 
brief abstract, only a simplified version of the first 
configuration will be considered. In particular, this paper 
will describe the analysis methodology and some preliminary results that show the effect 
of fiber fraction on the in situ properties of a fiber that is hollow. 

Calculation of effective properties 

Calculation of effective properties is straightforward when the microstructure can be 
approximated as periodic and heterogeneity is modeled discretely, such as in the finite 
element model in Figure 3.  

Figure 2: Transverse matrix 
cracks in a composite 

 

Figure 3: Three-phase analysis model 
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The periodicity requirements can be expressed as ( ) ( ) i
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volume averaged displacement gradients. The term iu d
x β
β

∂
∂

appears because of rigid 

body motion. Derivatives with respect to the coordinates are zero, so the periodicity of 
strains is guaranteed and can be expressed as ( ) ( )ij ijx d xα α αε ε+ = . Since the material 
properties are also assumed to be periodic, the stress fields are also periodic: 

( ) ( )ij ijx d xα α ασ σ+ = . The analysis of an RVE using finite elements involves 
imposition of multi-point constraints (mpc’s) on nodal displacements on the RVE 
boundaries. Of course, the forces must be self-equilibrating between adjacent RVE’s. If 
transformation techniques are used to impose the mpc’s, the transformed force vector 
includes terms that represent this sum of forces, so it is convenient to prescribe them to 
be zero. To calculate effective properties, the model is subjected to a series of loadings, 

each one with a single non-zero component of iu
xβ

∂
∂

. The volume averaged strain and 

stresses and strains are calculated for each load case. Based on the requirement 
that ij ijkl klSε σ= , one can set up simultaneous equations to solve for the effective 

engineering properties. 

The definition of effective properties is no longer so clear when there are multiple 
levels of microstructure. Suppose one desires to obtain the effective properties for the 
nanotube in Figure 1. The standard procedure would be to analyze a periodic array of 
tubes, like that in Fig. 4.                

There is only point contact between the adjacent tubes. 
The interaction of one tube with the surrounding material is 
nothing like that in Fig. 1. There is little hope that the 
properties determined from analyzing such an array would 
produce useful results. Instead, one is faced with 
determining in situ properties. How does a typical tube 
behave when it is surrounded by matrix? Of course, when 
the fiber arrangement is changed (e.g. from a hexagonal to 
square array) or the fiber fraction is changed, the behavior 
of a typical tube also changes… i.e. the effective properties change. 

 

Figure 4: Periodic array of 
circular fibers 
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The in situ effective properties are herein calculated by performing local volume 
averaging of stresses and strain in just the fiber for various load cases in contrast to the 
volume averaging for the entire RVE. This is not a rigorous procedure. One of the goals 
of this paper is to examine the error in this calculation for various situations.  

Configurations 

 The tube chosen for this brief paper has a square cross-section. (Fig. 5) While 
this might seem somewhat unusual, there is an advantage for this fundamental study. The 
advantage of the square shape (and the other shapes shown in Fig. 5) is that it is space 
filling, which allows for a periodic array in which there is reasonable contact between 

adjacent RVE’s, in contrast to the point contact for the circular fibers. As a result, one 
can calculate the in situ properties for the fiber from a very small fiber volume to 100 
percent fiber volume without dealing with pathological configurations. The expanded 
version of this paper will consider the circular shape as well as other possibilities. Also, 
herein the tube wall thickness was assumed to be 10 percent of the outside width of the 
tube. Hence, 64% of the tube was void. The material properties for the matrix and fiber 
wall were assumed to be isotropic and were as follows 

 E ( in Gpa) υ 

Matrix 2.82 0.395 

Fiber wall 200 0.3 

Note that fairly extreme material properties and void percentage was used. Less 
extreme cases were also considered, but will not be discussed in this abstract. 

 Results and Discussion 

There are various ways to characterize the adequacy of the effective properties 
calculated for the fiber. One way is to calculate the effective properties of the periodic 
array of just fibers (Fig. 6). Then matrix is placed between the fibers. This composite is 
then subjected to periodic loading. Local volume averaging of stresses and strains for the 
fiber is used to determine the in situ effective properties of the fiber.   Characterization of 

 
Figure 5: Space-filling fibers
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the fiber behavior would be much easier if the effective properties from the model in 
Fig.6a agreed with the in situ properties from the model in Fig. 6b.  Of course, one does 
not expect to be so lucky… so this paper will examine the differences.  

Figure 7 shows that the in situ fiber E22 and G12 are nearly constant up to about 50 % 

fiber fraction. The E22 then begins to rise quickly to a value more than four times as large. 
The Poisson's ratio 23ν changes significantly throughout the range of fiber fraction. The 
G23 decreases monotonically with fiber fraction for almost the entire range. It is clear that 
the properties obtained when the fiber fraction is 1.0 are usually irrelevant. To check 
whether the in situ properties could be used to replace a three-phase model with a two-
phase mode, effective properties of the composite were calculated using the models 
shown in Fig. 6b and 6c, where the fiber properties in 6c are the in situ properties. This 
was done for fiber fractions = .1 and .9. The composite effective properties from the two-
phase model agreed very well with the three phase predictions… the maximum error for 
any of the orthotropic properties was 2.3%.  
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a) In situ E22            b) In situ υ23 

Fig. 7: Variation of predicted in situ fiber properties with fiber fraction. Note that 
fiber fraction =1 corresponds to configuration in Fig. 6a.  

 

 
a) Fibers only            b) Fibers with discrete voids        c) Homogenized fibers 

Figure 6: Different configurations of periodic arrays.  
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c) In situ G12            d) In situ G23 

Fig. 7. completed. 

Conclusions 

When multiple levels of microstructure exist, accurate micromechanics predictions 
become much more complicated. Initial results showed that in situ effective properties 
calculated using a simple local volume averaging procedure can give a good estimate of 
the behavior of a hollow fiber. These properties could potentially be used to eliminate 
one level of microstructure. At the same time, the in situ effective properties cannot be 
used to model the behavior of hollow fibers at any volume fraction in a composite. The in 
situ properties vary greatly with fiber fraction and properties obtained using an insitu 
analysis of 0.9 fiber fraction cannot be used in modeling composites with low fiber 
fraction. Much more investigation is required to outline the limits of the strategy 
proposed herein.  
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