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Summary 

Sliding systems with frictional heating such as brakes and clutches often 
encounter variation in the contact area at the interface, making the thermoelastic contact 
problem non-linear. The transient evolution of the temperature field for a linear contact 
problem with frictional heating and constant sliding speed is obtained through 
superimposing the solution of the perturbation problem to the steady state solution. An 
approximate solution is sought in which the contact area variation in time is treated as 
piecewise constant, allowing the contact problem to be linear for a small time step. This 
method is presented here and tested in the context of a thermoelastic problem involving 
two contacting surfaces.     

Introduction 

During brake application or engagement of a transmission clutch, frictional heat 
is generated and the resulting non-uniform temperature cause thermoelastic distortion 
which in turn affects the contact pressure distribution [1]. The thermoelastic contact 
problem is linear as long as the contact area is constant, and the transient evolution of the 
temperature field can be written as a sum of eigenfunction series and steady state solution 
[2, 3]. The width of the contact area, however, may vary during the clutch or brake 
application, and hence the thermoelastic contact problem becomes non-linear and the 
solution of eigenfunction series expansion and steady state cease to apply. Evidence of 
contact area separation in clutch application has been observed [4] when the initial 
sliding speed is sufficiently high.  

In this paper, we explore an approximate method for solving the non-linear 
thermoelastic contact problem. In this solution, the contact area is treated as a piecewise 
constant in time, which allows the problem to become linear during a small time step. 
This method will be tested on a single-sided clutch problem, in which the transient 
solution of the unperturbed axisymmetric problem is sought. 
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Method of Solution 

As for a linear non-homogenous differential equation, the general solution can 
consist of a homogenous and a particular solution 

),,,,(),,,(),,,( tzyxtzyxTtzyxT ph θ+=      (1) 

where hT  and pθ  are respectively, the homogenous and particular solutions for the 
temperature field. Identifying solutions of the exponential form [5] for the homogenous 
problem 
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and solving the heat conduction, thermoelasticity and the boundary conditions leads to an 
eigenvalue problem for the exponential growth rate ib and the associated eigenfunctions 

iθ . The steady state solution can be used in place of the particular solution [6]. If the 
sliding speed is constant and the contact area is remained unchanged, the general solution 
for the transient evolution of the temperature field can be written as: 
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where iC   is a set of arbitrary constants determined from the initial condition y,0)(x,T .  

The eigenvalue ib , eigenfunction iθ , and the steady state solution sθ  of the 
expansion series are fixed as long as the sliding speed and the contact area remain 
unchanged. The contact area along the interface however may shift or reduce in size 
during brake application or clutch engagement, which in turn modifies the eigenvalues 
and eigenfunctions. Hence, the transient solution (3) ceases to apply.  

The change in the contact area, cΓ , can be treated as a piecewise constant in time.  In 
other words, the system experiences a sequence of time periods at different constant 
contact areas. In mathematical terms, we can write 
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where )t(v j  are piecewise constant shape functions defined by 
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  and       0 1 jjj tttt;)t(v ><= −       (6) 

and jt  are a set of nodal times with 00 =t . 

 During the j-th time period, the sliding speed is constant and equal to jV  and we 
can write the temperature field in the eigenfunction series 
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where ( )j
ib , ( )j

iθ , ( )j
sθ  are the eigenvalues, eigenfunctions, steady state temperatures 

respectively appropriate to contact area jcΓ  and we have chosen to reset the zero for time 

in each time step. 

 Continuity of temperature at time jt  then requires that 
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and hence,  
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from equation (8). In other words, at the end of each time step, we need to re-expand the 
instantaneous temperature field as a series of the eigenfunctions appropriate to the next 
time step. 

The viability of this idea was examined in the context of a single-sided clutch 
problem (Figure 1). The geometry is discretized by the finite element method; the 
instantaneous temperature field can be characterized by a vector Θ  whose components 
are the n nodal temperature. The representation (1) leads to n×n eigenvalue problem for 
θ  [7] and it follows that there will be n terms in the eigenfunction series (3). Similarly 
the finite element solution of the steady state problem leads to a vector sΘ  of n terms. A 
general solution for the evolution of the nodal temperature )(tTi  at constant speed and 
contact area can then be written as: 
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where the n constants kC are to be determined from the n equations defining the initial 

nodal temperatures )0(iT . This representation can be generalized to cases where the 
contact area is piecewise constant, as in (7). To assess the accuracy of this solution, a 
finite element solution was developed for the same transient thermoelastic contact 
problem using commercial FE package.  

Results 

The stability of the system is determined by the speed at which the first eigenfunction 
in equation (2) becomes unstable. This critical speed, cω , was evaluated for the single-
sided clutch shown in Figure (1) and used to normalize the operating speeds in the figures 
presented in this paper. 

     

 Figures 2 and 3 show the contact pressure distribution at different instances of 
time for c. ω=ω 51 . Non-uniform distribution of the contact pressure is observed where 
the distribution initially forms a peak near the outer radius of the disk. This peak then 
shifts over time toward the main radius of the disk. Separation in the contact area starts at 
the outer radius, which is anticipated since the sliding speed and therefore the frictional 
heat generation is function of the disk radii. The contact area is reduced by almost 75% 
whereas the amplitude of the contact pressure is increased almost seven times the initial 
value. The transient solution of the contact pressure distribution was also evaluated for a 
sliding speed of c. ω=ω 750 , as shown in Figure 4. To establish a comparison between 
the two speeds the same average heat flux of 2 Mw/mm2 is used, which is achieved by 
increasing the applied pressure 0p . Although the operating speed is below the critical 
value, non-uniformity in the pressure distribution can still be observed. This non-
uniformity, however, is much less severe than that observed in Figure 3. The system at 
this speed however takes longer time to converge to steady state. 

The proposed method of solving the non-linear contact problem was proven to be 
more efficient compared to the conventional finite element solution. The number of time 

Figure 1: Single-sided clutch system 
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steps required to reach a certain level of accuracy was noted to be less than that needed 
by the conventional solution. Furthermore, when the system operates above the critical 
speed few unstable eigenfunctions dominate the output of the system. A reduced order 
model can be constructed by truncating the series in (10) at some values less than n. This 
in turn enhances the efficiency of the solution in term of reducing the computational time.  

Conclusion 

In this paper, an approximate solution to the transient non-linear thermoelastic contact 
problem with frictional heating was explored, where the source of non-linearity is the 
variation of the contact area during the transient process. The contact area is 
approximated by a piecewise constant representation. This method was tested in the 
context of a single-sided clutch system for a constant sliding speed. When sliding speed 
is above the critical value, a significant reduction in contact area was observed 
contributing to high local contact pressure. For a sliding speed below the critical value, 
the reduction in the contact area is moderate and the system takes relatively a longer time 
to reach a steady state. The number of time steps required for a given level of accuracy 
was observed to be less for this solution. Moreover, a reduced model can be constructed 
by truncating the number of the eigenfunctions in the expansion series of the transient 
solution, resulted in an extra reduction in the computational time.   
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Figures (2, 3) Contact pressure distribution at different instants of time for ω(0) = 1.5 ωc 
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Figures (4, 5) Contact pressure distribution at different instants of time for ω(0) = 0.75 ωc 
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