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Summery 

The multiquadrics (MQ) method (or Kansa’s method) is used to simulate the 
electromagnetic field problems. The corresponding governing equations are the 
Maxwell’s equations. The time-varying Maxwell’s equations are simulated directly at 
the time-space domain (time-domain method) without transforming them into wave 
or Helmholtz equations, which are usually adapted in the literature. The multiquadrics 
method by the time-domain method is able to model the electromagnetic fields as 
long as the initial conditions and boundary conditions are given, and calculate the 
electromagnetic wave propagations until the requested time is terminated. MQ 
scheme is an excellent method not only for very accurate interpolation, but also for 
the estimates of partial derivatives. It is easy to deal with their appropriate partial 
derivatives, divergences, curls, gradient or integrals. The numerical model is chosen 
to calculate and analyze the distribution of the electric and magnetic fields in the 
homogeneous, isotropic and non-lossy two-dimensional rectangular waveguide and 
three-dimensional cubic cavity resonator. Good agreements are obtained as compared 
with analytical solutions. 

Introduction 

The early development of computational electromagnetism was prompted by 
intellectual curiosity concerning the implications of Maxwell’s unified electric and 
magnetic field theory, especially after Hertz’s verification of the predicted wireless 
propagation of electromagnetic energy. This early work more or less concentrated on 
obtaining exact analytical solutions of Maxwell’s equations for a variety of diffraction 
problems. In the 1950s, Keller formulated the geometrical theory of diffraction 
(GTD). In the mid-1960s, Harrington set the agenda for the next 20 years by working 
out a systematic, functional-space description of electromagnetic interactions, which 
he called the method of moments [1].  
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In the mid-1960s, Yee introduced a computationally efficient algorithm to directly 
solve Maxwell’s time-dependent curl equations using the finite difference method [2]. 
It is often called the finite-difference time-domain (FD-TD) method which has been 
used in many topics in the computational electromagnetism. Kolbehdari solved 
electromagnetic problems by explicit and implicit time-domain finite element 
methods using the Whiteny forms.  

In this study, an innovative scheme – the multiquadrics method (MQ) or the so 
called Kansa’s method [3 & 4] is used. The multiquadrics method (MQ) is first 
introduced by Hardy (1971), to approximate topographic surface from scattered data 
points and has been applied to surveying and mapping problems (1975). MQ scheme 
is a truly scattered, grid free scheme (or meshless) for representing surfaces and 
bodies in an arbitrary number of dimensions. The radial basis functions (RBF) depend 
only upon distances between pairs of points. So it is very powerful to deal with 
irregular domain problems. In comparison to other numerical methods, Maydych and 
Nelson (1990) and Wu and Schaback (1993) showed that MQ produces exponential 
convergence instead of linear or quadric convergence, with minimal semi-norm errors, 
meaning that MQ can provide a high accuracy of numerical solutions with relatively 
small amount of collocation points. And MQ scheme is an excellent method not only 
for very accurate interpolation, but also for partial derivative estimates. It is easy to 
deal with their appropriate partial derivatives, divergences, curls, gradient or integrals. 
So error analysis and huge scale computation of differential and integral equations 
will be much easy to deal with. The distribution of the electric and magnetic fields in 
the homogeneous, isotropic and non-lossy two-dimensional rectangular waveguide 
and three-dimensional cubic cavity resonator have been studied and employed to 
check the validity and efficiency of the MQ scheme in the present work. 

Governing Equations 

The Maxwell’s equations were derived by James Clerk Maxwell (1831-1879), 
which constitute the theoretical study leading to the discovery of the electromagnetic 
waves. Maxwell summarized and modified some well-known laws of the 
electromagnetism, such as Gauss’s law, Ampere’s law and Faraday’s law to form the 
so called Maxwell’s equations. For any electromagnetic field, all the laws or 
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principles are necessary to satisfy the Maxwell’s equations. In order to simplify the 
problem of electromagnetic field to a first attempt, we assume： 

1. The waveguide or resonator is filled with the electrically and magnetically linear, 

homogenous, isotropic and source free dielectric material 

Source free => vρ  and J
v

 can both be regarded as zero. 

2. The medium obeys the Ohm’s law. 
3. All materials that in vacuum are assumed to be non-lossy. 
The Maxwell’s equations (1) to (4) then can be simplified to the following： 
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where E
v

is electric field intensity, H
v

is magnetic field intensity, J
v

is electric current 

density, vρ is electric charge density. These equations are the governing equations for 

the electromagnetic fields that we need. Therefore, the parameters of permittivity ε  
and permeabilityµ  are assumed to be constants. In this study, we simply take ε  
and µ  are equal to 1. The boundary conditions cannot be chosen freely. They 

should depend on the physical situation of the problem. In this study, we presume the 
boundary material is a perfectly electrical conductor. Consequently, the boundary 
conditions of the perfect conductor are shown as follow：  

0=⋅Hn
rv                                                   (5)                    

0=× En
vv                                                   (6) 

Numerical Analysis 

In this study, the multiquadrics method (MQ) or so called Kansa’s method is used 
to deal with our numerical simulation. Let, 

1392
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



 

∑ =
+= n

j ijExjxi craE
1

22                                     (7) 

∑ =
+= n

j ijEyjyi craE
1

22                                     (8) 

∑ =
+= n

j ijEzjzi craE
1

22                                     (9) 

∑ =
+= n

j ijHxjxi craH
1

22                                    (10) 

∑ =
+= n

j ijHyiyi craH
1

22                                    (11) 

∑ =
+= n

j ijHzjzi craH
1

22                                    (12) 

∑
= +

−
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ n

j ij

ji
Exj

i

x

cr

xx
a

x
E

1
22

)(                                (13) 

where  2222 )()()( jijijiij zzyyxxr −+−+−=                   i = 1 ~ n 

Equations (7) ~ (13) are substituted to equations (1) ~ (4) and the time derivative can 
be dealt with by the finite difference method of time marching scheme. For details it 
is referred to Wong’s work [5]. 

Numerical Results and Discussions 

For our numerical simulation, the dimension of the two-dimensional 
rectangular waveguide and three-dimensional cubic cavity resonator are with 
length a=1, width b=1and height h=1. We further take the value of Kansa’s 
method parameter c = 0.246, with the mesh size 14*14 for the 
two-dimensional waveguide. Fig. 1 represents the time evolution history of xE , 

yE for zTE  mode respectively at fixed points (x, y) = (0.1428, 0.1428) for 
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two-dimensional problem. And we further take Kansa’s method parameter c=0.5, 
with the mesh size 8*8*8, for the three-dimensional cavity resonator. Fig. 2 
represents the time evolution history of ZE , and yH  respectively for TM mode at 

fixed point (x, y, z) = (0.75, 0.25, 0.25) for three-dimensional problem. The 
comparisons of both cases with the analytic solutions have demonstrated that 
the MQ algorithm is a very efficient and accurate tool for the simulation of the 
computational electromagnetism using the time-varying Maxwell’s equations. 

Conclusions 

The time-varying Maxwell’s equations are simulated directly at the time-space 
domain (time-domain method) without transforming them into wave or Helmholtz 
equations in the present work. The multiquadrics method by time-domain 
combination is capable to model the electromagnetic wave propagation and good 
agreements as comparing with the analytic solutions are obtained. The good 
performance of the MQ (Kansa’s) scheme demonstrated by the two-dimensional 
waveguide and three-dimensional cavity resonator has shown that it is a powerful tool 
for the numerical solution of electromagnetic field problems. 
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Fig. 1 The time history of (a) xE  (b) yE , for zTE  mode of two-dimensional 

waveguide 
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Fig. 2 The time history of (a) zE  (b) yH , for TM mode of three-dimensional cavity 

resonator 

Numerical solution  Exact solution  
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