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Public Key Algorithm Comparison
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Summary

The main target of this work is to expose the capacities that make elliptic curve cryp-
tography the most suitable one to be implemented in environments with several constrains
related to processor speed, bandwidth, security and memory.

Introduction

In order to present the advantages of using elliptic curves in cryptography, we have
compared several public key algorithm characteristics with elliptic curve ones. We have
made a comparison among different public key cryptosystems: ElGamal for encryption,
Diffie-Hellman for key exchanging and the corresponding ones based on elliptic curve
theory, as well as the RSA algorithm. In order to achieve the purpose of this study, several
performing features have been tested: memory usage in the execution process and speed.
We have used M. Rosing subroutines implemented in C to obtain the different elliptic curve
algorithm characteristics. The underlying fields chosen are Galois fields GF(2n), using
polynomial basis as well as normal ones.

Diffie Hellman Protocol over Elliptic Curves

In order to obtain the same secret key, the two peers involved in the key agreement
protocol, combine the other peer’s public key with its private key. Both parties must share
certaindomain parameterfl] which are used in each cryptographic protocol over elliptic
curves. The parameters that must be known by each party are the listed below:

Table 1: Domain Parameters

| Domain Parameters || Meaning |
GF(Fq) Finite Field
Prime number different than 2 of"2where
q mis a positive integer
a,be GF(Fq) Curve parameters
Prime positive integer, that divides the
curve ordery | (#E(Fq))
Ge E(Fg) Point _vvh|ch belongs to the curve, whoge
order jsr

r
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Besides, wheig = 2™, the way to represent the elementsdf(Fq) (normal basis or
polynomial ones), is another parameter . Another one is the cofactaiE /r.

Apart from the domain parameters, each peer must own a pair of keys: the private key
se [1,r — 1] and the public on&/, which is a point belonging to the elliptic curég such
thatW = sGwhereG € E whose order is. The methods used to generate public keys
as well as the ones to validate them are described in [1]. Below these lines, it is briefly
described the basic tests that a public k&y= (Xg,¥q), which belongs to the other peer,
must fulfill in order to be considered a right one:

e CheckthaQ # O

o Verify thatx, e yq are elements of the fielfl; considered
o \erify that Q belongs to the elliptic curvE chosen

e CheckthanQ=0

Sometimes, the last check is omitted, as the multiplication operation produces a high com-
putational cost, so if a volatile public key is computed each time a certain protocol is carried
out, then the validations procedure would cost a extra high load during execution time.

It was in 1985 when for the first time, the possibility to use the group of points of an
elliptic curve in the Diffie-Hellman Key Agreement Protocol appeared [2]. ECKAS-DH1
is the Diffie-Hellman Key Agreement Protocol over elliptic curves, in which each party
contributes with a unique pair of keys. In this protocol, either the ECSVDP-DH or the
ECSVDP-DHC primitives may be chosen, as well as a key derivation function —SHA-1
or RIPEMD-160—. In order to carry out this protocol it is also necessary to choose the
domain parameters, a private key according to those domain parameters, obtain the public
key of the other party —and optionally, check that it is a valid key—, then obtain the secret
shared value, and finally, execute either SHA-1 or RIPEMD-160 [1] over the secret shared
value to obtain the secret shared key .

The IEEE proposed another version of this protocol to avoid several problems that the
Diffie-Hellman protocol deals with. In this case, the two parties have two key pairs, which
produces the generation of two secret shared values.

In general, the main disadvantage of the Diffie-Hellman protocol is that it may suffer
the “man-in-the-middle” attack.

There is also a Menezes-Qu-Vanstone Key Agreement Protocol version over elliptic
curves based on the primitives ECSVDP-MQV or ECSVDP-MQVC.

ElGamal Protocol over Elliptic Curves

Public key encryption algorithms are mainly used, not for data encryption, but for key
exchange; this is due to the fact that public key encryption is much more slow than private
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one. The encryption protocol described in this article is EIGamal, which is widely spread,
not just over elliptic curve, but also over integer number finite fiélgls

There are other public key encryption algorithms implemented over elliptic curves,
such as: Massey-Omura (not included in [1]), which is not as spread as ElGamal, but has
several advantages as its simplicity; and the ECIES —Elliptic Curve Integrated Encryption
Scheme—, which is a secure protocol under different circumstances, for example, chosen
adaptive encrypted text attacks.

ElGamal protocol may be used in data encryption as well as key exchange, due to
its flexibility. It is not a secure protocol, when referring to active attacks; so the use of
this protocol is just recommended with other extra security elements, as for example, the
mixture of the encryption algorithm as well as a digital signature one and a hash function,
as studied by Schnorr and Jackobsson. When using this protocol, it is not necessary to
know the curve order. Another advantage is that it does not exist a patent over the protocol.

The description of this protocol is shown below:

1. 4 andB generate the key paitg,P;) y (b, P,), wherea andb are random numbers
which belong tdFy

. B sends the key paib,R,) to 4
. A generates the random numibet
. 4 calculates the poirg, = kG.

a b~ W DN

. A calculates the poin®, = P+ kR,, whereP is the elliptic curve point to be en-
crypted

6. 4 sends taB the points(P;, R,)

An attacker, in order to obtain the private keyrom the public oneR,, should solve the
logarithm problem, as both keys are matched by the equjenbG. An advantage of

this protocol, is that each time it is executed, a key pair is generated, which is more secure;
on the other hand, the encrypted message is twice the length of the plain text, which implies
an storage increment and a constraint in bandwidth.

Experimental Results

The results shown in the following figures are several analysis which have been carried
out in order to compare different public key cryptographic protocols. Normal basis are
considered in the evaluated elliptic curve protocols.

We have obtained that Diffie-Hellman and ElIGamal protocols over elliptic curve have
similar temporal complexity.

Comparing RSA, ElGamal and ECEIGamal execution time (depending on the key
length in bits) we may observe that the elliptic curve one is the lowest, as it is shown
in figure 1.
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Figure 1: Time complexity among the different algorithms measured

Nevertheless, it must be taken into account that figure 1 must be evaluated considering
that the protocols used supply with the same security level. A 1000-bit-length key in RSA
provides the same security level than a 150-bit-length one in elliptic curve cryptography
algorithms, refer to table 2 obtained from [3] in order to get more information.

Table 2: Key size comparison bits

RSA or ElGamal

Reference (bits) ECC (bits)
1 512 106
2 768 132
3 1024 160
4 2048 210
5 21000 600
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So, taking into account the security level (from 1-5 in 2), the algorithm speed com-
parison is depicted in figure 2. It is shown that RSA algorithm is the lowest one, and that

ECEIGamal is faster than ElIGamal.
The results obtained in the experiments have been obtained with a Pentium 133 MHz

and a 16 MB RAM, so relative results will be kept when using another platform. On the
other hand, execution time and speed depends on the platform chosen.
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Figure 2: Speed comparison among the different algorithms measured
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Conclusions

From the results obtained we may conclude that, among the studied algorithms, the
ones which use elliptic curve cryptography have a higher performance, a better time re-
sponse. On the other hand, when using polynomial basis, memory requirements are higher;
nevertheless, when choosing normal basis to represent the different elements in elliptic
curve algorithms, storage memory is reduced. Obviously, as in elliptic curve cryptogra-
phy, key size is smaller than in other public key algorithms, memory requirements are also
reduced.

Elliptic curves have been studied for over a hundred of years but it was in 1985 when
N. Koblitz and V. Miller proposed, independently, to use the group of points of an elliptic
curve defined over a finite field, in cryptography. The youth of public key cryptosystems
based on elliptic curves has brought about an important controversy about its safety, nev-
ertheless, the fact is that elliptic curve properties have been studied for over 150 years, but
not their application in cryptography. The youth of public key cryptosystems based on el-
liptic curves has brought about an important controversy about its safety. This skepticism
comes from the idea that elliptic curve cryptography has not been tested, cryptoanalized,
as much as RSA -based on integer factoring problem (IFP)-, or DSA -based on the discrete
logarithm problem (DLP)-. However, algorithms such as ECDSA (digital signature), EIGa-
mal elliptic curve version (encryption) and ECDH (key agreement) are based on ECDLP,
a mathematical problem without subexponential-time solution by now (unless for certain
kind of elliptic curves, such as supersingular ones).
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