
Calculation of electronic properties of point
defects with the quantum embedded cluster

approach.

Miguel A. Blanco, Aurora Costales, V́ıctor Luaña *
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Universidad de Oviedo. 33006-Oviedo. Spain.

and

Ravindra Pandey

Dept. of Physics, Michigan Technological University. Houghton, MI 49931.

Overview of the invited talk to be presented at the “Multiscale modeling of
nanomaterials” Symposium of the International Conference on
Computational and Experimental Engineering and Science 2004

(ICCES’04) at Madeira, Portugal.

In this work, our main aim is to devise a methodological scheme to ob-
tain local electronic and structural properties of point defects within semi-
conductor materials. To keep focus, we will particularly apply this scheme
to defects in chalcopyrites, and take ZnGeP2, one of the simplest ones, as
our reference. The importance of this material lies on its non-linear-optical
properties, which combined with the appropriate nanostructures can give rise
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to laser properties in the micron wavelengths. To do so, a thorough knowl-
edge of the properties of its defects, both native (vacancies, interstitials, and
antisites) and foreign (substitutional or interstitial impurities), is required.

There are two main theoretical approaches to the study of point defects:
the supercell and the cluster-in-the-lattice schemes. Both deal with interfac-
ing the local distortion around a defect with the perfect lattice. The supercell
method does this by imposing periodic boundary conditions on a large cell
containing the defect, and is most appropriate to obtain global properties.
The cluster-in-the-lattice technique, on the other hand, deals with the inter-
face by embedding a piece of the crystal containing the defect (the cluster)
within a model of the effects of the perfect lattice [1, 2, 3, 4, 5, 6]. In our
case, this model is not just a more or less classical potential (as, e.g., in the
original Ref. [1]: our model mimics all of the quantum interactions that the
lattice imposes into the defect, and is thus a quantum embedding technique.
This kind of scheme is better suited to study local properties than supercells.
In particular, since it is in fact equivalent to a molecular calculation, it can
benefit from the wealth of high-accuracy methods developed by quantum
chemists to deal with the electron correlation. This is especially important
when spectroscopic properties are involved, which require a much higher level
of correlation than current DFT exchange-correlation potentials offer.

A successful embedding model should include several different effects.
First, due to the low symmetry of the lattice involved, it should appropri-
ately reproduce the electrostatic potential. It also should take into account
the short range repulsion between the atoms in the cluster border and their
neighbors within the lattice, that is, the quantum electronic effects. In ad-
dition, it should describe correctly the gradual relaxation of the neighboring
atoms from the vicinity of the defect into the perfect lattice, both in the
electron density and in the nuclear geometry. Since any realistic model must
be of a finite nature, we have to address the frontier effects that we are
introducing. In fully covalent materials, H-termination of the cluster usu-
ally is enough to saturate the valence of the outermost atoms, while in ionic
compounds there is a complete charge transfer which does not leave dan-
gling bonds. Semi-ionic compounds like the chalcopyrites suffer from both
problems, but we will show how to surmount them by using partial ionic
charges.

To model our system, we will use different embedding elements. First, the
electronic LCAO description will use all-electron basis sets optimized in per-
fect crystal calculations. Then, the perfect crystal electrostatic potential will
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be modeled by finite sets of point charges. The short-range confining poten-
tial will be described by means of crystal adapted pseudopotentials (caPS,
see Ref. [7]). These caPS are extracted from perfect lattice independent
atom calculations (aiPI, see Refs. [8, 9, 10]), and include the point charge
long range potential, a short range electronic Coulomb potential, and two
non-local contributions, those of exchange and the overlap or Pauli repul-
sion. Their great advantage is that these contributions can be cast into the
effective core potential (ECP) functional form, and thus be used to describe
complete atoms as if they were frozen atomic cores.

To combine this embedding elements, we have to devise a multiscale
model: the geometric relaxation is clearly dominated by the connectivity,
whereas the long range electrostatic potential has contributions from the in-
finite lattice, and the electron density relaxes under the influence of the two
previous elements. Thus, an onion-like model is seen to be the most efficient.
Centered at the point defect, it would include a shell of geometric relax-
ation which we will truncate at the second neighbors. The next, larger shell,
would include fixed-geometry atoms still within the LCAO calculation, so as
to allow for a buffer region in which the electronic structure can match the
alien density of the defect with the density of the perfect lattice. The lattice
embedding potential will in turn be split in two regions: a short range one,
including the atoms in contact with the LCAO cluster, will include caPS to
model the short range quantum interactions. The long range region will be
treated at the coarsest level, that of classical electrostatics: it will mimic the
local structure of the electrostatic potentials by means of a finite set of point
charges at lattice sites [6], and it will also reproduce the exact periodic crys-
tal contributions over the defect by means of a set of far-away point charges
fitted to give the exact values of the potential and all of its first and second
derivatives at the defect site.

This multiscale model includes 8 far-away charges, 284 local point charges,
42 atoms described as caPS, 41 atoms within the LCAO electronic structure
region, with 1052 electrons, while only the 5 innermost atoms (the defect and
its nearest neighbors) are included in the geometry optimization.

To test for the convergence of all the embedding contributions, we have
calibrated our model with so-called self-embedding calculations, in which we
take a piece of the perfect crystal and describe it with our model. The model
is correct in as much as it reproduces the properties of the perfect crystal,
in particular its electron density distribution, the atomic geometry, and the
energy. The above model succeeds to do so even for the low-symmetry P-site
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in ZnGeP2, and thus it will be used in the present work.
Using experimental evidences, we found that the interesting defects to

compute will mainly be V−Zn, V+
P/VP, S+

P/SP, and Se+
P/SeP. Here, the para-

magnetic defects will be the most important, since their EPR signals are
easy to detect and give information about the local environment. Thus, the
properties that will be calculated will include: (i) the spin densities over the
atoms, responsible for the EPR signal; (ii) the ionization potentials, available
through photoluminescence experiments; and (iii) the formation energies of
the defects, the main terms controlling their stability. Also, local geometries
around the defects will be calculated, as those which minimize the energy.

Since all of our properties involve a large cluster, we have to define them
in an appropriate way. Thus, the formation energy of the defects will be
calculated as the difference in energies of the defect cluster minus the en-
ergy of the perfect lattice cluster, so that all energy contributions within
the cluster are canceled except for those introduced by the defect, plus or
minus the atomic energies of any atoms excluded or included in the defect
formation. The ionization potential with respect to the zero interaction level
(the removed electron goes to infinity) will be the difference in energy of the
cluster with one electron less minus the original cluster describing the defect.
If we also compute the IP for the perfect lattice clusters, we can compute the
location of the impurity levels within the band gap without falling into or-
bital pictures, i.e., we will be computing absolute many-electron energy level
differences, as opposed to one-electron energy levels. In order to correct the
geometries for any systematic error left, we will give atomic displacements
instead of positions, and compute them with respect to the self-embedding
calculation, instead of with respect to the perfect lattice positions. Finally,
we use the Quantum Theory of Atoms in Molecules (QTAM, see Ref. [11])
to compute basis-set independent charge and spin atomic densities, again
correcting for any self-embedding residual errors. Thus, all of the properties
obtained are in a reasonable agreement with the experiments.
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