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Summary

Multi-scale approaches in computational mechanics have recently received much attention in several branches
of the physical sciences. The quasi-continuum (QC) method, in particular, furnishes a computational scheme for
seamlessly bridging the small atomistic scale systems at zero temperature to a deforming continuum, which permits
a reduction of the full set of atomistic degrees of freedom. The present paper surveys iterative solution techniques to
determine the stable equilibrium configurations of a deforming crystalline material. The objective is to study solvers
in order to optimize computational performance. Due to the implicit solution technique employed by the QC method
and the strongly non-convex nature of the potential energy surface with vast numbers of metastable configurations,
one of the keys to its success is the use of an effective and efficient iterative solution technique. The two iterative
solution techniques studied presently are the nonlinear conjugate gradient method and the Newton method. The
performance of various preconditioners employing approximate and exact Hessians, and various line search methods
such as backtracking are illustrated for a nano-indentation problem in 2-D and 3-D situations.

Introduction

The QC method is commonly employed to solve a wide variety of multi-scale problems. Typically problems of
interest are those involving a small number of defects such as dislocations, a crack, or grain boundary interactions.
In this paper, iterative solution techniques are explored for the QC methods in 2-D and 3-D situations. The fully
non-local QC method with variable clusters [2] is employed in the 3-D situations and the local/non-local variation
[1] is employed for the 2-D situations. These two formulations are briefly described first before detailing out the
iterative techniques to minimize the total potential energy arising out of these formulations. Readers are referred to
the original papers [2,3] for further details.

Brief Overview of the QC method: The key aspect of accurate representation of real materials by interatomic
potentials is that the interaction energies extend beyond nearest neighbor atoms. Thus interatomic potentials are
non-local. Given the atomic potentials as a function of the atomic coordinates {x1, . . . ,xN}, the total potential energy
admits additive decomposition of the energy of individual atoms,

Ea = ∑
i

Ei ⇒ fi =−∂Ea({x1, . . . ,xN})
∂xi

(1)

where fi is the force on each atom in the absence of externally applied forces. For practical implementation, potentials
possessing a cutoff radius over the first few neighboring atoms is preferred. In atomistic calculations there are no
definitions of the continuum concepts of strain or displacement. The motion of individual atoms are tracked without
reference to their original positions. On the other hand in continuum mechanics it assumes that a strain energy density
functional W exists. Hence, the energy in an incremental volume dV around a point X is W (X)dV . In addition, the
QC method is allowed because the constitutive behavior is assumed to remain unchanged regardless of representation
by atoms or continuum.

The QC formulation that is entirely “non-local” was proposed recently by Knap and Ortiz [2] in that the locality
of finite element (FE) computations is effectively removed. This method appears promising as it is truly seamless
since it has eliminated the effects of the atomistic to continuum transition regions. The key is to employ FE concepts
to kinematically constrain some atomic positions to node positions through the Cauchy-Born rule and to determine
forces from a fully non-local atomistic description in all regions of space. The forces are calculated from clusters
containing representative atoms that correspond to FE nodes, which are chosen to be the degrees of freedom of the
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problem. Small clusters of atoms surrounding the representative atoms are constructed by interpolating the displace-
ments of the FE nodes and deforming the perfect lattice accordingly. If X is the reference positions of an atom and
U j is its interpolated displacements, employing FE interpolation functions Nj allows for the positions of all the atoms
x to be computed. Thus via derivatives of energy (Eq. 1), the force on node j becomes

f j ≡−∂Ea

∂U j
=−

N

∑
i=1

∂Ei(u)
∂u

∂u
∂U j

(2)

Employing the identity ∂u
∂U j

= NjI and the displacement interpolation u(X) = ∑N
j=1 U jNj(X), and the above summa-

tion is approximated by summation over a smaller cluster around each representative atom (i.e., node)

f j =−
N

∑
i=1

∂Ei(u)
∂u

Nj ≈−
N

∑
i

wi

[
∑

c∈Ci

pcNj(Xc)

]
; pc =

∂Ea

∂uc
(3)

where Cj refers to the set of atoms in the cluster around node j, pc is the atomic-level force experienced by cluster
atom c in displacement field u, and wi is a appropriate weight function for node i to account for the variable density
of nodal points throughout the model. The appropriate Hessian can be computed accordingly.

The 2-D QC formulation employed in this study involves “local” and “non-local” regions separated by a transi-
tion region. The non-local region is the atomistic region in which every atom is explicitly represented. These atoms
are treated using interatomic potentials. In the local region, there is a FE mesh in which, typically, some of the
nodes are mapped on atomic lattice sites. There is a one-to-one correspondence between atoms and nodes on the FE
mesh at the interface of the transition region. In the continuum region, the FE nodes become sparse and elements
become larger so as to completely fill the physical space. In addition, on the continuum side of the interface there
exists so-called corrective ghost forces due to loss of central force symmetry across the interface. The total force and
the Hessian are derived by explicit differentiation of the energy functional Eq. 1 which are then modified by the FE
approximation and corrected with ghost forces such that ultimately [3]

fα =
∂Πh

∂uα
=

M

∑
e=1

υeP(Fe)∇ Nα(Xe)−
RNL

∑
β=1

[
mβ

∑
j=1

ϕ j
βNα(X j

β)

]
+

mβ

∑
j=1

ϕ j
β−nα(f̄α + fG

α ) (4)

Hαβ =
M

∑
e=1

υeC(Fe)∇ Nα(Xe)∇ Nβ(Xe)+
RNL

∑
γ=1

[
mγ

∑
k=1

mγ

∑
l=1

Kkl
γ Nα(Xk

γ)Nβ(Xl
γ)

]

−
mα

∑
k=1

mα

∑
l=1

Kkl
α Nβ(Xl

α)−
mβ

∑
k=1

mβ

∑
l=1

Kkl
β Nβ(Xk

β)+δαβ

mα

∑
k=1

mα

∑
l=1

Kkl
α (5)

where C = ∂2E
∂F2 is Lagrangian tangent stiffness tensor, Kkl

β = ∂2Eβ
∂rk

βrl
β

is the atomic level stiffness matrix, P = ∂E
∂F is the

first Piola-Kirchhoff stress tensor and Xe is the element centroid. The design of both the total energy and the forces
in these QC formulations permit application of gradient-type iterative solution methods to minimize the total energy
to obtain the static, zero-temperature equilibrium atomic configuration.

Solvers for Unconstrained Minimization

In order to obtain the equilibrium configuration of the solid, unconstrained minimization of the total potential en-
ergy Π(u) needs to be performed. Let g = ∇Π (u), H = ∇ 2Π(u), and B ≈ H−1 be the gradient, the Hessian and
approximate inverse of the Hessian, respectively. Then a general iterative solver framework for unconstrained mini-
mization can be described by Algorithm 1 below. It is evident from Algorithm 1 that if only the gradient ∇Π (u) is
available then Quasi-Newton [4], steepest descent, and non-linear conjugate gradient [5,6] are applicable. It should

be noted that, as an approximation to H(k)−1
, B(k) is constructed based on the gradient. While the Newton-Raphson
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method has better convergence properties the computation of an exact Hessian matrix is time-consuming and may
require large amounts of storage for large scale problems. In Algorithm 1, convergence is said to occur if ‖gk‖< ε is
achieved.

Algorithm 1: General iterative solver framework
Initialization: u0 is given;
Relax Iteration:

uk+1 = uk +αkdk, k = 0, · · · , where dk for:
Newton-Raphson: dk =−(Hk)−1gk
Quasi-Newton: dk =−Bkgk
Steepest-descent: dk =−gk
Conjugate Gradient: dk =−gk +βdk where β for:

Fletcher-Reeves method: βFR
k =

( ‖gk‖2

‖gk−1‖2

)2

Polak-Ribiere method: βPR
k = 〈gk,gk−gk−1〉

〈gk−1,gk−1〉
or Hestenes-Stiefel method: βHS

k = 〈gk,gk−gk−1〉
〈dk−1,gk−gk−1〉

Preconditioned Non-linear CG: Nonlinear conjugate gradient methods are motivated by the success of the linear
conjugate gradient method in minimizing quadratic functions with positive definite Hessians. Nonlinear conjugate
gradient methods are of the form

uk+1 = uk +αkdk (6)

where αk > 0 is the step-length and dk is search direction. Normally the search direction at the first iteration is the
steepest descent direction, namely, d0 =−g0, the other search directions can be defined recursively:

dk+1 =−gk+1 +βkdk. (7)

For nonlinear problems, performance is problem dependent, but these methods have the advantage that they re-
quire only gradient evaluations and memory requirements are minimal making this a popular class of algorithms for
large-scale optimization. These algorithms can be derived as extensions of the conjugate gradient algorithm or as
specializations of limited-memory quasi-Newton methods. Among Fletcher-Reeves, Polak-Ribiere and Hestenes-
Stiefel method, the Polak-Ribiere non-linear conjugate method appears to have the best convergence performance
and is described in Algorithm 2. An efficient preconditioner of non-linear preconditioned conjugate gradient (PCG)
should approximate the inverse of the Hessian. For its construction, one can refer to the Quasi-Newton method de-
scribed subsequently. For the Broyden-Fletcher-Goldfarb (BFGS) method with preconditioner Bk+1(B0 = I) at k+1,
iterations involve the following preconditioning operation:

qk+1 = Bk+1rk (8)

which can be computed via

qk+1 = rk +
〈rk,sk〉yk + 〈rk,yk〉sk

〈sk,yk〉
− 〈rk,sk〉
〈sk,yk〉

(1+
〈yk,yk〉
〈sk,yk〉

)sk. (9)

The bracket notation refers to the standard scalar product of two vectors.

Algorithm 2: Polak-Ribiere Conjugate Gradient with given tolerance ε:
(1) Initialize u0; d0 =−g0;
(2) FOR (k = 1, · · · ,kmax) DO
(3) Compute α such that minΠ(uk−1 +αdk−1); /* line search */
(4) uk = uk−1 +αdk−1;
(5) IF (‖gk‖ ≤ ε) THEN exit;

(6) βk = 〈gk,gk−gk−1〉
〈gk−1,gk−1〉 ; /* Polak-Ribiere method */

(7) dk =−Bkgk +βkdk−1;
(8) ENDFOR
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Figure 1: Performance of preconditioned nonlinear CG for 3-D nanoindentation problem.

Line-search Algorithm: Define Π(α) = Π(u + αd) where d and u are given. This potential energy can be re-
defined as a univariate function as φ(α) = Π(uk + αdk) which transforms minx Π(x) into the minimizing problem
minα∈[�,h̄] φ(α). Two main line-search methods are Newton-Raphson (where Hk is needed) approach and backtrack-
ing approach. In backtracking method the step length control in the line search algorithm is mainly governed by the
Wolfe Conditions which requires two conditions to be satisfied. First, requires that to avoid over-approximating the
step length Π(uk + αdk) ≤ Π(uk) + c1α〈gkdk〉 where c1 = 10−4 which is based on the sufficient decrease condi-
tion. Secondly, to avoid under-approximating the step length, a condition is placed on the curvature and is given by
〈g(uk +αkdk),dk〉 ≥ c2〈gk,dk〉 where c2 = 0.9. A backtracking line-search method is described in Algorithm 3.

Algorithm 3: Backtracking Line-Search: given α0 > 0 and γ1, γ2 satisfying 0 < γ1 < γ2 < 1
(1) k = 0;
(2) While Π(uk +αkdk) > Π(uk)+c1αk〈gk,dk〉
(3) Compute αk+1 ∈ [γ1αk,γ2αk] such that Wolfe conditions are satisfied;
(4) k = k +1;
(5) ENDWhile

Statement (3) in Algorithm 3 is implemented via the bisection method, gold section section or polynomial interpo-
lation method. In our study, three point cubic interpolation methods are employed which are described here briefly.
Assume φc(α) = aα3 +bα2 +cα +d that satisfy φc(0) = φ(0) φ′c(0) = φ′(0), φc(αk) = φ(αk−1) and φc(αk) = φ(αk).
Then, φc(α) = aα3 +bα2 +φ′(0)α +φ(0) where[

a
b

]
= θ

[ −α2
k

−α3
k−1 α3

k

][
φ(αk)−φ(0)−φ′(0)αk
φ(αk−1)−φ(0)−φ′(0)αk−1

]
, (10)

and θ= 1/(α2
k−1α2

k(αk−αk−1)). Using φ′q(α) = 0 such that φc(α) is minimized, it follows that αk+1 = b−
√

b2−3aφ′(0)
3a .

Remarks: The motivation for this paper comes from the results of Figure 1. The performance of the presently
employed nonlinear CG method [2] with various preconditioners was evaluated using a large test specimen made of
FCC gold with a spherical indentor size of 70 nm. The specimen is significantly larger than that used in the numerical
experiments section later in the paper to demonstrate the large iteration numbers required for typical QC problems
over a single load step. Clearly the preconditioning results are better with than without preconditioning. However,
all of the preconditioning methods resulted in similar convergence results while a diagonal preconditioner produced
marginally better results. Hence, the goal is to explore alternative iterative strategies to reduce the number of iterations
by at least one order of magnitude. One such alternative is the Newton-Raphson technique which is described next.

Newton-Raphson Method : Approximating Π(uk+1) by Taylor series yields

Π(uk +αkdk)≈ Π̄(dk) = Π(uk)+αkdT
k gk +

α2
k

2
dT

k Hkdk (11)

Since Hk is symmetric by definition, the search direction dk can be found as the minimizer of Π̄(dk)⇒ ∂Π̄
∂dk

=

αkgk + α2
kHkdk. Then, the optimal search direction is given by αkdk+1 = −H−1

k+1gk such that Π̄(dk) is minimized.
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Figure 2: (a) Nanoindentation into single crystal aluminum with an EAM potential, (b) results for 10th
load step, (c) – (d) performance of nonlinear CG and Newton-Raphson method.

The resulting Newton-Raphson method is described in Algorithm 4. The computationally intensive part of Algorithm
4 is the Statement (8). For large scale problems, due to the symmetry and sparsity of H, a linear preconditioned
conjugate gradient algorithm (PCG) is employed to solve Hd = g. Using the Hessian matrix, the optimal search
direction can be obtained through the Newton-Raphson method. However, the O(n2) memory requirements and
O(n3) associated with solving a linear system directly have restricted Newton-Raphson methods only to (1) small-
scale problems, (2) problems with special sparsity patterns, or (3) if the initial guess is in the vicinity of the solution.
As an alternative, Quasi-Newton and discrete Newton and truncated Newton methods can be employed. The key to
the above methods is to obtain an approximate inverse of the Hessians matrix, i.e., B≈H−1.

Quasi-Newton Method: The Quasi-Newton method builds up an approximation to the Hessian by keeping track
of the gradient differences along each step taken by the algorithm. Various conditions are imposed on the approximate
Hessian. For example, its behavior along the step just taken is forced to mimic the behavior of the exact Hessian,
and it is usually kept positive definite. Let sk = uk−1−uk and yk = gk−1−gk , then four methods can be described in
Table 1.

Algorithm 4:Newton-Raphson algorithm with given tolerance ε:
(1) Initialize u0;
(2) d0 =−g0;
(3) FOR (k = 0, · · · ,kmax) DO
(4) argminα Π(uk +αdk); /* line search */
(5) uk+1 = uk +αdk;
(6) update Hk+1 and gk+1;
(7) IF (‖gk‖ ≤ ε) THEN exit;
(8) Hk+1dk+1 =−gk+1; /* search direction */
(9) ENDFOR

Table 1: Approximate Hessian
Broyden-Fletcher-Goldfarb (BFGS): Bk+1← Bk + gk×gk

〈gk,dk〉 +
yk×yk
〈yk,sk〉

Powell-Symmetric (PSB): Bk+1← Bk + (yk−Bksk)×sk+sk×(yk−Bksk)
〈sk,sk〉 + (yk−Bksk)×sk

〈sk,sk〉2 (sk× sk)

Davidson-Fletcher-Powell (DFP): Bk+1← Bk− (Bksk)×(Bksk)
〈sk,sk〉Bk

+ yk×yk
〈yk,sk〉 + 〈sk,sk〉Bk (wk×wk),

where wk = yk
〈yk,sk〉 −

Bksk
〈sk,sk〉Bk

Gill and Murray: Bk+1← Bk + 1
yT

k sk

((−BkyksTk + skyT
k Bk

)
+

(
1+ yT

k Bkyk

yT
K sk

)
sksTk

)
Numerical Experiments

Two sets of numerical test calculations were performed. The first is 2-D using the QC method whose software was
made available through a freely distributed package [1] with the example problem of a rigid flat-nosed knife indenter
also contained therein. The material considered is single crystal aluminum modeled with an EAM potential indenting
the (1̄10) surface. The second calculation is 3-D using the QC cluster-based method originally proposed in [2]. The
material in that example is a [100] surface of unrelaxed single crystal EAM gold subjected to a spherical indenter.
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Figure 3: Performance of Newton-Raphson method with Hessian 3-D nano indentation of unrelaxed
single crystal EAM gold problem.

Figure 2(a) depicts the 2-D problem of the rigid knife-like flat indentor into single crystal aluminum. The simulation
results for the 10th load step are shown in Fig. 2 employing Newton-Raphson technique with preconditioned conju-
gate gradient method to solve search direction employing the exact Hessian (Eq. 5). The nonlinear conjugate gradient
method [1,3] did not converge for the first load step in this case and its corresponding wall-clock time is therefore
not reported in Figure 2d. The convergence results of the Newton-Raphson for 10 load steps are shown in Figure 2
(c)–(d). This reduces the number of iterations by order of magnitude for the local/non-local QC method for in 2-D
situations. With this results the efforts were carried out for fully non-local QC method in 3-D situations.

The preliminary results with the appropriate computations of the Hessian from the force (Eq. 3) are shown in Fig. 3
for the 3-D unrelaxed single crystal problem. The search direction is recomputed in each iteration of the Newton-
Raphson technique. From the figure it is clear that the number of iteration is reduced by an order of magnitude
compared to the nonlinear CG with diagonal preconditioner [2]. However, because of the use of a simple unrelaxed
test model, the results are as of yet inconclusive. Initial surface relaxations are underway, and additional results will
be presented in the final paper.
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