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Summary 

The elastic moduli of a single layered graphene sheet in two orientations are 
studied by two different methods, finite element and geometrical approaches 
using equivalent spring modeling. The graphene sheet is defect-free and has a 
regular structure of hexagonal lattices. In equivalent spring modeling, the atomic 
bonds are modeled using a linear spring with spring constant equal to atomic 
bond tangent stiffness. A prescribed displacement is applied to the atomic 
structure, and strain measures are determined geometrically. The graphene sheet 
behaves like an orthotropic material and has different moduli in x and y 
orientations.  

Introduction 

One of the most important material constants in classical continuum 
mechanics is modulus of elasticity. Variety of methods are used to determine the 
modulus of elasticity of materials in nanoscale, such as ab-initio quantum 
mechanics, molecular dynamics modeling using inter-atomic potentials, and 
laboratory practices. However, there are very few continuum studies of carbon 
nanostructures because at small length scales representative of nano- and micro-
engineered material systems, continuum models are not flexible enough to 
accommodate individual atomic scale processes. Among the limited continuum 
studies, a carbon nanotube is either modeled as a cylindrical shell, a beam or 
many truss members. Two critical parameters in the shell model, namely the 
elastic modulus and shell thickness of a carbon nanotube, are determined by 
fitting the tensile and bending stiffness obtained from molecular dynamics 
simulations.  

In this paper, we use the finite element and analytical methods to determine 
the moduli of elasticity in nanoscale. The model which is used to simulate the 
behavior of a graphene sheet in two methods, involves spring-like segments as an 
approximation to atomic bonds. Atomic locations are presented as nodal points, 
and between these nodes, there are spring elements with linear relationship 
among elongation and resulting force. Spring constant is determined using Taylor 
series approximation for inter-atomic potential around equilibrium position. The 
inter-atomic potential which is used in our calculations is well-known Tersoff-
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Brenner potential. Simple tension test simulation is used to determine the elastic 
moduli of the graphene sheet.  

Modeling Atomic Bonds as Linear Springs 

Energetics at the atomic-scale is governed by quantum mechanics. Because 
of complexity of quantum mechanics energy functions, it is convenient to work 
with simpler potential energy functionals obtained empirically. One of the most 
popular inter-atomic potentials is so-called Tersoff-Brenner potential. Tersoff [1] 
and Brenner [2] determined the inter-atomic potential for carbon as: 

)()()( rBVrVrV AR −=                                                                                                (1) 

For atoms i and j , where ijr  is the distance between atoms i  and j , RV  and 

AV are the repulsive and attractive pair terms given as follow: 
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The parameters )(eD , S , β , and )(eR  are determined from the known physical 
properties of carbon, graphite and diamond, and are given at the end of this 
section; the function cf  is merely a smooth cutoff function to limit the range of 
the potential, and is given as follow: 
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which is continuous and has a cutoff of nmR   2.0)2( = and nmR  17.0)1( =  to 
include only the first-neighborhood for carbon. The parameter ijB in Eq. (1) 

represents a multi-body coupling of the bond between atoms i  and j , and the 
local environment of atom i , which is given by: 
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where ikr  is the distance between atoms i  and k . cf  is the cutoff function given 
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in Eq. (3), ijkθ is the angle between bonds ji − , ki − . The function G is given by: 
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For atoms i  and j  having different local environment, Brenner [2] 

suggested to replace the coefficient ijB  given in Eq. (1) for ijB given as follows: 

( ) / 2ij ij jiB B B= +                                                                                                       (6)                                                                   

The parameters )(eD , S , β  and )(eR  in Eq. (2), δ  in Eq. (4), and 0a , 0c  
and 0d  in Eq. (5) have been determined by Brenner [2] to fit the binding energy 
and lattice constants of graphite and diamond for simple- and face-centered cubic 
structures. In fact, Brenner [2] gave two sets of parameters for carbon, that we 
have used second set of these parameters.  
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It is worth noting that S ,δ , 0a , 0c  and 0d  are dimensionless parameters. 
Considering Eq. (7), computing B  needs the known location of the atoms around 
the considered atom. As noted previously, structure of atomic bonds in graphene 
sheet are honeycomb-wise hexagons. Accordingly, each carbon atom is 
surrounded by three atoms having atomic bonds, which have the angle equal to 

3/2π . Obtaining explicit expressions for RV  and AV  as functions of r , we can 
compute derivatives of the potential function as follow: 

74.3 89.2656.4 8.32 09.86363.894 +−+− +−= rr ee
dr
dV

                                                    (8) 
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Eq. (8) represents the force acting on the atom due to change in the inter-
atomic distance. Differentiating Eq. (8) with respect to r , the second derivative 
of the potential energy as a function of r  is obtained. Since, the spring constant 
should be determined at the equilibrium position, so we substitute nmr   144.0= , 
equal to carbon-carbon bond length of graphite [3] (alternatively, obtained by 
setting Eq. (8) to zero), into Eq. (9) and compute the spring constant as follows: 
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Accordingly, the equivalent spring constant for the bond stiffness in graphite 
is obtained. Assumptions which we have used for carbon bonds, contain small 
deformation and small rotation cases. Small rotation assumption was made 
because, for computing B , we need the angle between bonds, and this angle is 
assumed to be equal to 3/2π  as the equilibrium bond angle, which is only true 
for small deviations of equilibrium point. It is noted that even in pure tension, the 
bond angles may change, and due to this fact, small deformation assumption has 
been made. For small external forces in pure tension, the bond angle is 
approximately considered constant and equal to 3/2π , so expression for B  is 
only calculated at the beginning of load step. 

Finite Element Modeling 

As previously noted, atomic bond structures in graphene sheet are 
honeycomb-like hexagons. For the purpose of modeling this structure, we put a 
node on the location of each atom. A spring element is defined between each pair 
of nodes corresponding to an atomic bond. Spring constant of these elements 
have been determined in the previous section. 

The major purpose of the analyses is to obtain the elastic moduli. To this end, 
it is sufficient to apply a small prescribed deformation and calculate the 
developed reaction forces. Boundary conditions of rectangular models are fixed 
nodes on one side, and applied prescribed displacement on the opposite side. The 
sides parallel to the direction of tension test simulation are assumed to be fixed in 
the perpendicular direction.  

The forces required to apply a known prescribed displacement are determined by 
the finite element software (Ansys) for a rectangular grapheme sheet. Dividing 
the total force to the length of the side which the displacement is applied on and 
the effective thickness of the graphene sheet, the stress in the sheet is determined. 
Knowing the value of the prescribed displacement and the length of the other side 
of the model, the strain developed in the sheet is calculated. Likewise, the simple 
tension test is simulated in both x and y orientations to study the behavior of the 
graphene sheet.  

Table 1: The elastic moduli by finite element method using equivalent spring modeling 

1E  TPa  34.3  

2E  TPa  237.2  

Geometrical Approach 

In order to obtain the elastic modulus of a graphene sheet, we use geometrical 
deformation measures. In contrast to the finite element section, according to 
Figure 1, a representative element of the graphene sheet is chose and the element 
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is assumed to be displaced inδ . Then, the developed forces in the spring 
elements corresponding to atomic bonds are determined. 

 
Figure1: illustrates the displacement of a representative element in δ . 

The stress and strain corresponding to the representative element of the 
graphene sheet are obtained as follow: 
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where efft  is the thickness of the graphene sheet, k  is the spring constant , a  

is the bond length in the graphene sheet and δ  is the prescribed displacement 
exerted to the representative element of the graphene sheet. In order to obtain the 
elastic modulus in the perpendicular direction, another representative element is 
considered as illustrated in Figure 2 and is displaced δ .  

  
Figure2: illustrates the representative 

element of the graphene sheet. 
Figure3: illustrates the displacement of a 

representative element in δ . 

By equalizing the forces induced in the bonds of the representative element, a 
relation between the displacements is obtained 2/3δ=∆ .The stress and strain 
induced by the applied displacement δ  on the element are determined as follow: 
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   Table 2: The elastic moduli by geometrical method using equivalent spring modeling 

1E  TPa  95.4  

2E  TPa  302.3  

Conclusion 

The results obtained in the current study feature different values for the 
elastic moduli in two orientations. Therefore, the grapheme sheet can be 
considered as an orthotropic plate. Also, the results achieved by two methods 
differ from each other, meanwhile the ratio of 21 / EE  is about 5.1  and similar in 
two methods due to the fact that both methods are initiated from equivalent 
spring modeling.  

It should be noted that the values in Tables 1 and 2 are in good agreement 
with the experimental results reported in the literature [3, 4]. We can assume that 
a nanotube is constructed by rolling a graphene sheet [4], so we are allowed to 
compare the results for elastic modulus of nanotube to that of the graphene sheet.  

A large variation of Young’s moduli was reported from 0.40 to 4.15 TPa with 
an average of 1.8 TPa in different reports. Krishnan et al. [5], have used TEM to 
observe the thermal vibration of a SWNT at room temperature and has reported 
Young’s moduli of SWNTs in the range from 0.90 to 1.70 TPa, with an average 
of 1.25 TPa. Wong et al. [6], have used AFM to bend a MWNT, and a large 
variation of Young’s modulus for MWNTs (0.69–1.87 TPa) have been 
determined. Yakobson et. al. [7] comparing molecular dynamic simulations and 
continuum mechanics theories for shells, obtained the elastic modulus equal to 
5.5 TPa and the effective thickness of SWNT equal to 0.066 nm. 
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