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Summary 

The elastic properties of a carbon nanotube (CNT) are estimated by using the double-
inclusion model, where one inclusion (the inner void) is embedded in the other inclusion 
(the outer tubular shell). The calculated results agree with experimental data. The effects 
of the tube diameter, length, and thickness on the elastic properties of CNTs are 
examined. 

Introduction 

Nanomaterials receive extensive attention in recent years.  Carbon nanotubes (CNTs) 
are perhaps one of the namomaterials based on which practical applications might be 
developed soon.   

Existing works on estimating the Young modulus of CNTs are mainly based on beam 
or shell thoeries.  The double inclusion models based on elasticity theories are employed 
in the present model to predict the elastic constants of CNTs. 

Basic Theories 

Consider an ellipsoidal, elastic matrix M , containing an ellipsoidal, elastic 
inhomogeneity . The matrix is embedded in an infinite elastic medium Ω B . The elastic 
moduli of , Ω M , and B  are given by 
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One may replace the inhomogenieties by a reference material with elasticity C  and 
prescribe transformation strains  and  in Ω∗ M∗ε ε Ω  and M , respectively, to 
compensate the material mismatch[1]. The average stress and strain fields produced in 
the double-inclusion V (= ) when the infinity domain B  is subjected to far field 

strains , are given by[2]  
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where the angle brackets represent averages, SΩ and SV are Eshelby’s tensors of V and Ω, 
respectively. 

Since the strain and stress fields must be preserved after homogenization, the 
following constraint conditions must be satisfied: 
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One can solve Eq. (4a, b) for the transformation strains required for homogenization 
in terms of farfield strains ε∞.  Since 
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substituting Eq. (2a, b) and Eq. (3a, b) into Eq. (5a, b) yields 
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The effective elastic properties C  of the double inclusion V  are defined by  
 

VijklijVkl C 〉〈=〉〈 εσ                (7) 

 

The combination of Eq. (6a, b) and Eq. (7) gives 
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Two candidate for the reference elasticity tensor C are selected: C = CM and C = C . 
 

Results and Discussions 

The elastic properties of a single-crystal graphite are given by[3]: C11 = C22 = 1060 
GPa, C12= C21  = 180 GPa, C13 = C23 = 15 GPa, C44 = C55 = 4.5 GPa, C66 = 440 GPa, and 
the other elastic moduli are zero. 

1598
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



As it is indicated in Figure 1, where the diameter and thickness of CNT are assumed 
to be 1.2 nm  and 0.34 , respectively, the length of CNT does not affect Young’s 
modulus of CNT significantly. The relationship between Young’s modulus and the 
diameter of CNT is shown in Figure 2, where the length and thickness of CNT are 
assumed to be 100 nm  and 0.34 , respectively. The predicted Young’s modulus 
increasing with a decrease in tube diameter agrees with the available experimental data 
[4~7]. It is noted that Young’s modulus drops significantly when the CNT diameter is 
longer than 1.2 nm . The relationship between CNT diameter and thickness, for a fixed 
Young’s modulus of 1000 GPa is plotted in Figure 3, which agrees with the experimental 
results [8]. 
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Figure 1: Young’s modulus vs. CNT length for t = 0.34 nm and D = 1.2 nm 
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Figure 2: Young’s modulus vs. CNT diameter for t = 0.34 nm and L = 100 nm 
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Figure 3: The relationship between CNT diameter and CNT thickness 
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Conclusions 

In the present work, a CNT is modeled as a double inclusion and its elastic properties 
are estimated using elasticity theories. The effects of tube diameter, length , and thickness 
on the elastic properties of CNTs are examined. 
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