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Summary 

Experiments shown that longitudinal pulses propagating through concrete and mortar 
specimens exhibit a dispersion behavior at low frequencies. In the present work the 
dipolar gradient elastic theory of Mindlin is employed and the experimentally observed 
dispersion in concrete and mortar is successfully explained. Both concrete and mortar are 
considered as homogeneous isotropic solids with microstructural effects and these effects 
are taken into account with the aid of the simple dipolar gradient elastic theory proposed 
by Mindlin.  

Introduction 

Concrete is a highly non-homogeneous material with a complex microstructure 
containing random inhomogeneities over a wide range of length scales. Its structure can 
be considered as a composite material where large aggregates are embedded in a mortar 
matrix. Similarly, the mortar consists of small aggregates dispersed in a cement paste 
medium. Understanding of how a stress wave propagates through such a medium is of 
paramount importance for many non-destructive testing techniques like ultrasonics and 
acoustic emission [1,2]. 

 Experiments performed in [3] with the aid of an experimental setup explained in [4], 
show that traveling longitudinal waves in concrete as well as in mortar undergo 
dispersion only at low frequencies where the material microstructure is much smaller 
than the wavelength of the incident wave. This fact reveals that microstructural effects on 
the propagating pulses appear to be dominant in cementitious material. On the other 
hand, it has been shown in [3] that the scattering of traveling waves by the embedded 
inhomogeneities [5,6] is not the mechanism of the observed dispersion. 

Considering concrete as a linear elastic material with microstructure, its dynamic 
mechanical behavior cannot be described adequately by the classical theory of linear 
elasticity, which is associated with concepts of homogeneity and locality of stresses. 
When the material exhibits a non-homogeneous behavior, microstructural effects become 
important and the state of stress has to be defined in a non-local manner. These 
microstructural effects can be successfully modeled in a macroscopic framework by 
employing higher order gradient elastic theories like those proposed by Cosserat brothers, 
Mindlin, Eringen, Aifantis and Vardoulakis. For a literature review on the subject of 
these theories one can consult [7-11]. 

During the last fifteen years, a variety of elastodynamic boundary value problems 
were solved either analytically or numerically by employing mainly simplified forms of 
the above mentioned enhanced continuum theories. Here one can mention the simple 
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gradient elastic theory of Altan and Aifantis [12] used by Altan et al. [13], Tsepoura et al. 
[10] and Polyzos et al. [14] to treat one and three dimensional vibration problems in 
gradient elastic bars, the gradient elastic theory with surface energy proposed by 
Vardoulakis and Sulem [11] employed by Georgiadis and Vardoulakis [15] to explain the 
dispersion behavior of Rayleigh waves propagating on the free surface of an elastic half 
space with microstructure,  etc.and the dipolar gradient elastic theory of Mindlin [16] 
used by Georgiadis [17] to solve Mode-III crack problems in dynamic gradient elasticity. 

In the present work, the dipolar gradient elastic theory introduced by Mindlin [16] is 
employed in order to explain the dispersion of longitudinal ultrasonic pulses observed 
experimentally in [3]. It is the simplest possible dynamic form of Mindlin’s higher order 
gradient theory. It is called dipolar since besides the classical Lame constants, two new 
material constants are introduced, which correlate the microstructure with the 
macrostructure of the considered gradient elastic continuum. The key idea of the present 
study is that a proper determination of the two microstructural material constants enables 
one to explain remarkably well the low frequency dispersive nature of concrete and 
mortar.  

Dipolar Gradient Elastic Theory and Wave Propagation 

Taking into account the non-local nature of microstructural effects, Mindlin [16] 
considered that the density of strain density is not only a function of strains, as in the 
classical case, but also a function of the gradients of the strains. In the dipolar version of 
his theory, this is expressed as 
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where e~  and e~tr  are the classical strain tensor and its trace, respectively, ∇  
represents the gradient operator, the dot, the double dots and the column of three dots 
indicate inner product between vectors and tensors of second and third order, 
respectively, ),( µλ are the classical Lame constants and 2g  is a new material constant 
(units of 2m ) called volumetric strain gradient energy coefficient, which correlates the 
microstructure with macrostructure.  

Extending the idea of non-locality to the inertia of the continuum with 
microstructure, Mindlin proposed a new expression for the kinetic energy density 
function [16] where the gradients of the velocities are taken into account, i.e. 
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where ρ is the mass density, u is the displacement vector, dtd /uu =& and h2 is the 
second new material constant (units of m2) called velocity gradient coefficient, which is  
always smaller than the volumetric strain gradient energy coefficient 2g . Taking the 
variation of strain and kinetic energy, according to the Hamilton’s principle, one 
concludes to the equation of motion of a continuum with microstructure, which in terms 
of displacements is written as follows:  
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The Helmholtz vector decomposition implies that u  can be written as a sum of 
irrotational and solenoidal fields according to the relation: 

Au ×∇+∇= φ                   (4)  

with φ∇ , A×∇   denoting volumetric and shape with no volume changes, 
respectively. In terms of wave propagation this means that φ∇  corresponds to 
longitudinal waves, while A×∇  represents shear waves propagating through the 
medium, i.e. 
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where k̂ represents the direction of incidence, b̂  is the polarization vector for the 
shear wave, r stands for position vector, sp kk , are the wave numbers of the longitudinal 
and shear disturbances, respectively, while ω  is the frequency of the propagating waves. 
Representing by Cp, Cs the classical phase velocities of longitudinal and shear waves, 
respectively, and inserting Eqs.(5) into Eq. (3) one obtains the following relation for 
longitudinal waves (similarly for shear).  
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Equation (6) reveal that longitudinal stress waves undergo dispersion when they 
travel in solids with microstructure. Their dispersion is entirely due to the presence of the 
two microstructural material constants 2g  and 2h . It is easy to see that by zeroing 2g  and 

2h , Eq.(6) lead to the linear expressions: 
222

pp kC ⋅=ω         (7) 
which characterize propagation of non dispersive waves in a classical elastic 

medium. Solving Eq.(6) for the wave number kp respectively, one yields the following 
relation:    
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 Then the phase velocity of longitudinal and shear plane waves propagating in a 
dipolar gradient elastic continuum has the following form: 
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 Results and Discussion 

The experimental setup is described in detail in [4]. The phase velocity was 
calculated by the difference in phase between the input and output signal as described in 
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[18]. The cases presented herein concern mortar with water to cement ratio, w/c=0.55 and 
0.65 and concrete with w/c=0.375 and 0.45. The aggregates in total (sand and coarse 
aggregates occupy approximately 60% of the material volume.  Since concrete can be 
considered as a particulate composite, a first approach concerning the volumetric constant 
g, is to relate its value to the particule size. Therefore, it was calculated as the ratio of 
mean aggregate size (2mm for mortar, 10mm for concrete) to the applied wavelength. 
This way the g constant is proportional to frequency and results in phase velocity vs 
frequency curves close to the experimentally obtained, as seen in Fig.1. As to the 
acceleration parameter h, that rules mainly the dispersion (difference between minimum 
and maximum velocity), it was found that being proportional and somehow lower than g, 
facilitates the fitting of the experimental curves. Specifically for the mortar cases it was 
set equal to g/1.034 and g/1.016 while for concrete it is lowered to g/1.216 and g/1.175. 

Fig.1. Comparison of experimental phase velocity and Mindlin’s prediction for (a) mortar 
and (b) concrete considering the aggregates as the microstructure 

Despite the general agreement, the velocity rise predicted at low frequencies is more 
acute than in the experimental curves. This implies that the size of the aggregate is not 
necessarily the actual characteristic size of the microstructure. Indeed, concrete contains 
inhomogeneities from the order of size of nm (nanopores) up to even cm (large 
aggregates). This fact makes identification of the characteristic length of the material’s 
microstructure a complicated task with other parameters as porosity or inter-particle 
distances possibly being important. Therefore, it was found proper to adjust the size of 
microstructure to a suitable value to fit experimental curves. The size of microstructure 
that, compared to the wavelength, yields g values reducing the discrepancy between 
theoretical and experimental results is approximately 600µm for mortar and 1.3mm for 
concrete. This is shown in Fig.2(a) and (b) for mortar and concrete respectively. 
Considering therefore, the size of effective microstructure around 1mm results in a curve 
less acute describing much more closely the experimental one. The values of h are not 

0 200 400 600
Frequency (kHz)

3500

3700

3900

4100

4300

4500

4700

P
ha

se
 v

el
oc

ity
 (m

/s
)

Mindlin, Cp=3900m/s
w/c=0.55, experimental
Mindlin, Cp=3675m/s
w/c=0.65, experimental

Mortar, a/c=3

(a)

0 200 400 600 800
Frequency (kHz)

w/c=0.375, experimental
Mindlin, Cp=3900m/s
w/c=0.425
Mindlin, Cp=3750

Concrete, a/c=3

(b)

1605
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



much different from the previous, resulting in g/1.029, g/1.0145 and g/1.17, g/1.145 for 
mortar and concrete respectively. 

Fig.2 Comparison of experimental phase velocity and Mindlin’s prediction for (a) mortar and 
(b) concrete with arbitrary microstructure 

Generally, the dispersion trend differs slightly for each type of material. While 
experiments show that paste is non-dispersive, mortar undergoes phase velocity increase 
up to about 200kHz. Concrete undergoes even greater and more acute increase. This is 
why the acceleration parameter h, ranges between g/1.035 - g/1.015 for mortar, while for 
concrete that is more dispersive, it varies approximately between g/1.21 - g/1.14.  

Conclusions 
In the context of the present work the following conclusions can be drawn: at first, 

experimental observations show that low frequency longitudinal pulses propagating in 
concrete and mortar undergo dispersion. Also, considering concrete and mortar as solids 
characterized by microstructural effects, theoretical predictions made by the dipolar 
gradient elastic theory of Mindlin are very close to the experimental observations. 
Besides the classical Lame constants, Mindlin’s theory introduces two new material 
constants, namely the volumetric strain gradient energy coefficient g2 and the velocity 
gradient coefficient h2, which correlate the microstructure with the dynamic 
macrostructural behavior of the considered gradient elastic continuum. Correlations 
between experimental observations and theoretical predictions have shown that h2 is 
always smaller than g2 while both constants depend on the aggregate size since they 
obtain quite different values for mortar and concrete. 
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