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Summary 

The Boundary Element Method (BEM) is used to compute the airborne sound 
insulation conferred by a single wall when a harmonic line load excites the system at low 
frequencies. Two models are used in the computations: in the first model the acoustic 
spaces are modelled assuming that they are buried in an elastic medium (tunnels), while 
in the second model the acoustic spaces are modelled with the thickness of the 
surrounding elastic structure (slabs and exterior walls) being specifically taken into 
account. In both models, the solid elastic material ascribed to the separating wall can be 
different from the one comprising the surrounding medium.  

Introduction 

Airborne wall sound insulation is a classic problem in acoustics. The first 
publications on it appeared at the beginning of the twentieth century [1]. It is not easy to 
measure the sound insulation provided by a partition construction element separating two 
compartments, for low frequencies (below 400 Hz), given the many intervening 
parameters [2]. Different researchers have proposed a range of numerical techniques to 
study this issue, which include: simplified methods [3], Finite Element Method [4], 
Boundary Element Method ([5]-[7]), and others. Well-established numerical techniques, 
such as the finite element and finite difference methods, have certain drawbacks; the 
domain being analysed has to be fully discretized, and very fine meshes are needed to 
solve excitations at high frequencies. 

There are many variables that may affect the acoustic insulation provided by a 
separation element, among these are the: wall mass, sound frequency, angle of incidence 
of the incident sound waves, the presence of weaker areas in the insulation, and the 
element’s rigidity and damping. The connections between the surrounding walls and the 
sound propagation within the two rooms are also important, with the vibration 
eigenmodes of the excited rooms being a determining factor for the latter ([3], [8]). 

Numerical and experimental methods have shown that, at low frequencies, the sound 
reduction index is highly dependent on parameters such as the size of the testing 
chambers, sound source location and the rooms’ surface absorption conditions ([9]-[11]), 
which makes it difficult to extrapolate test results to real-world situations. 
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This work presents two BEM models that have been formulated to compute and 
compare the responses obtained for the sound level pressure differences, referred to in 
this work as sound insulation, conferred by a single wall, at low frequencies ( Hz300< ). 
In the first model, the acoustic spaces are modelled assuming that they are buried in an 
elastic medium (tunnels) and separated by a single wall, modelled with an elastic solid 
material that could be different from the tunnels’ surrounding medium. The second model 
is more concerned with the specific thickness of the room’s slabs and walls. The results 
for the two models are compared, in the knowledge that the second one exhibits 
responses closer to the real life situations in a dwelling room.  

BEM Formulation 

The BEM only requires the discretization of the acoustic spaces’ surface and the 
boundary defined by the frontier between the two solid media, in this case, the separating 
wall and surrounding solid medium (see Figure 1). Model 2 also requires the 
discretization of the exterior slabs and wall surfaces. Along the boundary of the interior 
and exterior acoustic spaces, the system of equations required for the solution is arranged 
so as to impose the continuity of the normal displacements and normal stresses, and null 
shear stresses. The equations that need to be integrated to obtain this system of equations 
are known and can be found in Santos at al. [5].  

Along the boundary that separates the two solid elastic media, the system of 
equations required is arranged so that the continuity of both displacements and stresses is 
imposed. This two-dimensional system of equations requires the computation of the 
following integrals along the appropriately discretized boundary, 
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ij xxG m ,)(  are respectively the Green’s tensor for traction 
and displacement components in the solid medium mS , at point lx  in direction j  caused 
by a concentrated load acting at the source point kx  in direction i ; ln  is the unit outward 
normal for the lth boundary segment lC ; the subscripts 2,1, =ji  denote the normal and 
tangential directions, respectively, and the subscripts 2,1=mS  denote the solid elastic 
media 1 and 2. These equations are conveniently transformed from the yx,  Cartesian 
coordinate system by means of standard vector transformation operators. The required 
two-dimensional fundamental solution (Green’s functions) and stress functions in 
Cartesian co-ordinates, for the elastic medium, can be found in Tadeu and Kausel [12]. 
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The integrations in Equation (1) are performed analytically for the loaded element ([13], 
[14]). A Gaussian quadrature scheme is used when the element to be integrated is not the 
loaded element. 

Numerical Applications 

Figure 1 shows the geometry of the two models used in the numerical applications. 
This figure also indicates the position of the source and the grid of receivers used to 
compute the response. In the first model the acoustic spaces are modelled assuming that 
they are buried in an elastic medium (tunnels), while the second model accounts for the 
thickness of the elastic structure (slabs and exterior walls) surrounding the acoustic 
spaces. In both models the thickness ( m20.0 ) and the height ( m00.3 ) of the separating 
wall are constant. The thickness of the slabs (St) in model 2 is m30.0 , while the thickness 
of the exterior walls (Wt) is m20.0 . The mechanical properties of the solid and fluid 
media used in the computations are listed in Table 1. The calculations are performed for a 
frequency range from 1 to Hz300  with a frequency increment of Hz1 . The responses 
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Figure 1: Geometry of the problem: a) model 1; b) model 2. 
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were recorded along a grid of receivers placed in the two rooms, equally spaced at a 
distance of m25.0  along the vertical and horizontal directions, as illustrated in Figure 1. 
Receivers were also placed in the solid medium, in order to record the displacements of 
the separating wall and surrounding medium. 

 

Table 1: Mechanical properties of the solid and fluid media: α - the compressional wave 
velocity; β  - the shear wave velocity; ρ  - the density; η  - the loss factor. 

Medium Solid Fluid 
Material Ceramic Concrete Steel Air 
[ ]s/mα  2182 3499 6010 340 
[ ]s/mβ  1336 2245 3212 ----- 

[ ]3/ mkgρ  1400 2500 7850 1.22 

η  2102 −×  3104 −×  4103 −×  ----- 
 

Figure 2 gives the average sound insulation conferred by a ceramic separating wall 
( m20.0  thick) using model 1 and model 2. In order to study the importance of a 
structure’s stiffness to sound insulation, model 2 was also used when the material 
ascribed to the surrounding medium is steel instead of concrete.  

As expected [5], the localized dips in the sound insulation originated by the creation 
of a stationary pressure wave field inside the tunnels, are visible in all curves. These dips 
are smoother for higher frequencies. Additionally, there are other sound insulation dips 
that are related to the separating wall’s natural modes of vibration. In this frequency 
range ( Hz3001− ) it is possible to identify the dips associated with the first three 
eigenmodes, labelled in Figure 2 as F1, F2 and F3. 

Besides the sound insulation dips (separating wall vibration modes and stationary 
pressure wave field) mentioned about, additional dips in the sound insulation curves are 
found for model 2, and these are related to the eigenmodes of the surrounding structure. 
As expected, when the surrounding structure has greater stiffness (steel instead of 
concrete), the sound insulation curves approach to those provided by model 1, that is, the 
additional dips are less important. The first significant sound insulation dip for the case of 
concrete (model 2), occurs at Hz24 , and when steel is used, the eigenfrequency increases 
to Hz29  (Figure 2). Besides this increase of the eigenfrequency with increasing structure 
stiffness, the dip in the sound insulation becomes less pronounced, as mentioned earlier. 
This was also expected, given the lower flanking sound transmission in the stiffer 
structure, due to lower displacement amplitudes. However, certain dips in the sound 
insulation become more accentuated, namely for Hz128  and Hz207 . The physical 
explanation for this could be in the overlapping of the eigenfrequencies related to the 
vibration of the steel structure and the ones related to the vibration modes of the air inside 
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the rooms. This would lead to an increase in the sound level pressure inside the steel 
structure. 

The additional dips that are more visible for model 2 than for model 1 are in the 
frequency range around Hz200  (see Figure 2). As mentioned above, these additional dips 
are related to the vibration eigenmodes of the surrounding structure (slabs and walls). The 
vibration of slabs and walls results in increased flanking sound transmission, and a 
consequent drop in the sound insulation conferred by the separating wall in the vicinity of 
these frequencies. 
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Figure 2: Average sound insulation conferred by a ceramic separating wall when the material 

ascribed surrounding medium is:  concrete (model 1),  concrete (model 2) or 
steel (model 2). 

Conclusions 

The Boundary Elements Method was used to compute the low frequency sound 
insulation provided by a single wall separating tunnels (model 1) or dwellings (model 2), 
when the system is excited by a pressure line source placed inside one of the acoustic 
spaces. The sound insulation dips related to the eigenmodes of the separating wall and to 
the creation of a stationary wave field inside the acoustic spaces were identified and still 
present in the numerical applications computed for both models. 

When, instead of two tunnels (model 1), the separating wall divides two dwellings 
(model 2), besides the above-mentioned sound insulation dips (separating wall vibration 
modes and stationary pressure wave field), there are extra dips in the sound insulation 
curves, and these are related to the surrounding structure’s eigenmodes (slabs and 
exterior walls). As expected, when the stiffness of the surrounding structure is greater 
(steel instead of concrete), the sound insulation curve approaches those provided by 
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model 1. However, some dips in the sound insulation become more accentuated. This 
happens when there is an overlapping of eigenfrequencies related to the vibration of the 
steel structure and the ones related to the vibration modes of the air inside the rooms. 
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