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Summary 

 
The strain softening and cyclic elasto-plastic constitutive model for 

geomaterial is applied to a plane strain compression test analysis. The 
constitutive model is based on experimental findings about inherent and 
induced anisotropies involved in sand. The finite element method employing 
dynamic relaxation method combined with the generalized return-mapping 
algorithm are applied to the analysis. 
 

Introduction 
 

The dynamic relaxation method combined with the generalized 
return-mapping algorithm is applied to the integration algorithms of 
elasto-plastic constitutive relations including the effect of the shear band. Both 
explicit type and implicit-explicit type dynamic relaxation methods are applied 
to cyclic soil problems. 

In order to guarantee a mesh-objective consumption of energy, the strain 
softening modulus is made a function of element size [1]. This kind of shear 
banding model can incorporate a characteristics length of shear band in the 
material modeling based on physical experimental observations of strain 
localization with a finite size. 

  
Explicit Dynamic Relaxation Method 

 
  Solution to systems of nonlinear equations involving the governing non-linear  
equation is obtained as 
 

FPP init =−   and  ∑ ∫=
N vol

T dvBP ς                          (1) 
 
where P  is the internal force vector, initP  is the nodal forces due to initial 
stresses, F  is the external force vector, TB  is the strain-displacement 
transformation matrix, N  is the number of elements in Finite Element 
discretization, σ  is the stresses at Gauss points in each element, and vol is the 
volume of each element. The solution to the above governing equation can be  
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obtained by achieving the steady state response of the following dynamic  
equation of motion. 

FPPCvaM init
D =−++                                     (2) 

 

where DM  is the diagonalized mass matrix, C  is the damping matrix, which is 
a vector for critically damped dynamic relaxation, v  is the velocity vector, and 
a is the acceleration vector. 
  Then, applying the central difference method to Eq.(2) and replacing the 
damping by the following relation; 

 

DMC α=                                                   (3) 
the following relaxation equation can be derived. 
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Here, nq is the displacement vector at time n, t∆ is the time increment and α  
is the damping ratio which is the most critical value to be determined. 
  A number of methods can estimate a reasonable value of the critical damping 
parameter. We employ the Rayleigh’s quotient to determine the approximate 
damping in an adaptive way using the current solution parameters.  

 
Implicit-Explicit Dynamic Relaxation Method 

 
The explicit dynamic relaxation method suffers from the stability problem. 

The dynamic relaxation method with implicit-explicit type [2] is effective for 
soils-structures interaction problems. The explicit method without stiffness 
matrix is applied to parts of soil mass and the implicit method is used to a 
part of the stiff structures such as retaining wall, therefore two methods 
are used simultaneously. The algorithms are based on the Newmark 
scheme and the Skyline solver is applied. In large strain calculations, we 
use the rotation neutralized strain proposed by Nagtegaal [3]. 

 
Constitutive Model for Cyclic Behavior of Soil 

 
A simplified and generalized version of mesh size-dependent softening 
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modulus method is used in this study. A material model for a real granular 
material (i.e., Toyoura sand) used with the features of nonlinear pre-peak, 
pressure-sensitivity of the deformation and strength characteristics of sand, 
non-associated flow characteristics, post-peak strain softening, and 
strain-localization into a shear band with a specific width.  

The yield function ( f ) and the plastic potential function (Φ ) are given by: 
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01 =+′= σαΦ I                                             (6) 
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where 1I  is the first invariant (positive in tension) of deviatoric stresses and 
σ  is the second invariant of deviatoric stress. With the Mohr-Coulomb model, 

)(g Lθ  takes the following form: 
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φ  is the mobilized friction angle and Lθ  is the Lode angle. The frictional 
hardening-softening functions expressed as follows were used:  
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where m, fε  and rε  are the material constants and  pα  and rα  are 
the values of α  at the peak and residual states. The residual friction 
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angle ( rφ ) and Poisson’s ratio (ν ) were chosen based on the data from 
the test of air-dried dense Toyoura sand. The peak friction angle ( Pφ ) was 
estimated from the empirical relations based on the plane strain 
compression test on dense Toyoura sand. ψ  is dilatancy angle. The 
introduction of shear banding in the numerical analysis was achieved by 
introducing a strain localization parameter s  in the following additive 
decomposition of total strain increment as follows: 

p
ij

e
ijij sddd εεε +=   ,  eb FFs /=                          (11) 

where bF  is the area of a single shear band in each element; and eF  is the 
area of the element 

We propose the jump kinematic hardening model considering the cumulative 
deformation from cyclic loading. This is a modified and extended soil model of 
strain-hardening-softening model in order to take into account the cyclic 
behavior. Within bounding surface, plastic behavior is assumed and hardening 
modulus is much greater comparing the plastic behavior outside the bounding 
surface.  
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where 0α  indicates the reversing point. 
 

Fig.1 Jump kinematic model on π plane (Mohr-Coulomb model takes 
   pyramid shape) 
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Analysis of Plane Strain Test 
  

The simulation of plane strain tests by the finite element method using one 
element was carried out. The obtained stress difference-strain relationships are 
shown in Fig. 1. The material constants of Toyoura sand used for calculation 
are as follow: Dr = 60%, ν = 0.3, φr = 34 (deg), εr  = 0.6, εf  = 0.1, m = 0.3, 
shear band thickness = 0.3cm.  

 
 
 

Finite Deformation Analysis (Drained, Dr=60%)
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Fig.2 Drained stress-difference-strain relationship  
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Finite Deformation Analysis (Undrained, Dr=60%)
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Conclusions 
 

A material model for a real granular material was used with the features of 
nonlinear pre-peak, pressure-sensitivity of the deformation and strength 
characteristics of sand, non-associated flow characteristics, post-peak strain 
softening, and strain-localization into a shear band with a specific width 
The jump kinematic hardening model (modified and extended soil model of 
strain-hardening-softening) is promising for the prediction of cumulative 
deformation of soil structures and liquefaction problems 
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Fig.3 Undrained mean stress-stress difference relationship 
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